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Abstract 
Changes in land use/land cover (LULC) directly or indirectly affect water quality in watercourses and impoundments. 
Sustainable management strategies aimed to enhance ecosystem health and community well-being require an accurate 
water-quality evaluation. This study looks into the correlation between temporal changes in LULC, represented by se-
lected landscape variables (land cover area and proportion, patch density, Euclidean nearest-neighbor distance, mean 
shape index, and Shannon index), and water quality variables (nitrate, total phosphorus, and total suspended solids) at 
catchment scale. To compare the watershed-size influence, this analysis was performed at two different spatial scales 
represented by two Uruguayan basins of different sizes, San Salvador (3,118 km2) and Del Tala (160 km2). Partial Least 
Squares and Random Forest unsupervised machine-learning models were employed for this analysis. By exploiting a 
non-model-biased method based on game theory (SHAP), the LULC characteristics were quantified and ranked based 
on their level of importance in the water-quality evaluation. The main outcomes of this study proved that patch density is 
one of the most influencing metrics in both watersheds and for both models. Agricultural land use is the most critical one 
at both catchments and agricultural with a forage crop land uses are the most important ones for both algorithms. Fur-
thermore, it is possible to state that the adopted techniques are valuable tools that can provide an adequate overview of 

the water‐quality behavior in space and time and the correlations between water-quality variables and LULC. 

Keywords: water quality, land use/land cover, unsupervised learning, feature importance 

 

Resumen 

Los cambios en el uso del suelo y la cobertura del suelo (LULC) afectan directa o indirectamente la calidad del agua en 
cursos de agua y embalses. Las estrategias de gestión sostenible destinadas a mejorar la salud del ecosistema y el 
bienestar de la comunidad requieren una evaluación precisa de la calidad del agua. Este estudio analiza la correlación 
entre los cambios temporales en LULC, representados por variables de paisaje seleccionadas (área y proporción de 
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cobertura del suelo, densidad de parches, distancia euclidiana al vecino más cercano, índice de forma promedio e índi-
ce de Shannon), y las variables de calidad del agua (nitrato, fósforo total y sólidos suspendidos totales) a nivel de cuen-
ca. Para comparar la influencia del tamaño de la cuenca, este análisis se realizó a dos escalas espaciales diferentes 
representadas por dos cuencas uruguayas de diferentes tamaños, San Salvador (3118 km2) y Del Tala (160 km2). Se 
emplearon modelos de aprendizaje automático no supervisados de Mínimos Cuadrados Parciales y Bosque Aleatorio 
para este análisis. Al aprovechar un método no sesgado basado en teoría de juegos (SHAP), las características de 
LULC se cuantificaron y clasificaron según su nivel de importancia en la evaluación de la calidad del agua. Los principa-
les resultados de este estudio demostraron que la densidad de parches es una de las métricas más influyentes en am-
bas cuencas y para ambos modelos. El uso agrícola del suelo es crítico en ambas cuencas, y los usos agrícolas con 
cultivos forrajeros son los más importantes para ambos algoritmos. Además, es posible afirmar que las técnicas adopta-
das son herramientas valiosas que pueden proporcionar una visión adecuada del comportamiento de la calidad del 
agua en el espacio y el tiempo, así como las correlaciones entre las variables de calidad del agua y LULC. 

Palabras clave: calidad del agua, uso/cobertura del suelo, aprendizaje no supervisado, características relevantes 

 

Resumo 

Alterações no uso do solo/cobertura do solo (LULC) afetam diretamente ou indiretamente a qualidade da água em cur-
sos d'água e reservatórios. Estratégias de gestão sustentável voltadas para melhorar a saúde do ecossistema e o bem-
estar da comunidade requerem uma avaliação precisa da qualidade da água. Este estudo examina a correlação entre 
mudanças temporais no LULC, representadas por variáveis de paisagem selecionadas (área e proporção de cobertura 
do solo, densidade de manchas, distância euclidiana até o vizinho mais próximo, índice de forma média e índice de 
Shannon), e variáveis de qualidade da água (nitrato, fósforo total e sólidos suspensos totais) em escala de bacia hidro-
gráfica. Para comparar a influência do tamanho da bacia hidrográfica, essa análise foi realizada em duas escalas espa-
ciais diferentes, representadas por duas bacias uruguaias de tamanhos diferentes, San Salvador (3118 km2) e Del Tala 
(160 km2). Modelos de aprendizado de máquina não supervisionados de Mínimos Quadrados Parciais e Floresta Alea-
tória foram empregados para essa análise. Ao explorar um método não enviesado pelo modelo baseado na teoria dos 
jogos (SHAP), as características de LULC foram quantificadas e classificadas com base em seu nível de importância na 
avaliação da qualidade da água. Os principais resultados deste estudo mostraram que a densidade de manchas é uma 
das métricas mais influentes em ambas as bacias hidrográficas e para ambos os modelos. O uso agrícola da terra é 
crítico em ambas as bacias hidrográficas, e o uso agrícola com cultivo forrageiro é o mais importante para ambos os 
algoritmos. Além disso, é possível afirmar que as técnicas adotadas são ferramentas valiosas que podem fornecer uma 
visão adequada do comportamento da qualidade da água no espaço e no tempo e das correlações entre as variáveis 
de qualidade da água e LULC. 

Palavras-chave: qualidade da água, uso/cobertura do solo, aprendizado não supervisionado, características relevantes 

 
 

1. Introduction 

In the last decades, agricultural production in the 
region has experienced rapid expansion and intensi-
fication(1-4) mainly for soybean production(5-6). The 
predominant production systems depend on exter-
nal inputs, particularly the addition of fertilizers and 
pesticides, as well as complementary irrigation to 
achieve an increase in productivity. These man-
agement strategies may lead to significant amounts 
of nitrogen and phosphorus (among other nutrients) 
being carried into rivers through runoff from agricul-
tural lands. Approximately 20 % of nitrogen and 3 % 
to 20 % of phosphorus applied in agriculture are 
exported to surface waters, primarily due to erosion 
and leaching(7). Hydrological factors, including land 
cover changes, storm water management, seasonal 
variations, river flow dynamics, sediment transport, 
and the influence of climate change, all play vital 
roles in the transport of these pollutants(8). These 

factors affect the timing, magnitude, and fate of 
contaminants in aquatic ecosystems, making it cru-
cial to consider them when addressing agricultural 
pollution. This condition can trigger eutrophication 
processes and affect ecosystem services such as 
clean water provision(9-10). In Uruguay, since the 
beginning of 2000, most of the common cropping 
systems have included soybeans in sequences 
(winter crops/soybean) or intercrops (soybean/other 
summer crops) under no-tillage practices. 

Based on these considerations, it is critical to eval-
uate the relationships between land use/land cover 
(LULC) patterns and water quality at a watershed 
scale to explain variations in river water quality and 
to assure watershed ecosystem management and 
water resource conservation. 

Advanced spatial tools (like geographical information 
systems) along with machine-learning techniques 
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and water quality assessment methods make these 
types of analysis suitable. Bu and others(11) found 
that, during the dry season, built-up land use critically 
affected the concentrations of chloride, sulfate, and 
nutrients, which catted to the presence of possible 
point source pollution. During the wet season, built-up 
and agricultural land use had a significant influence 
on most water-quality variables. Moreover, all year 
long, the deterioration of water quality was positively 
associated with landscape metrics of Shannon’s 
diversity index (SHDI), patch density (PD), and edge 
density (ED), and negatively related to mean shape 
index (SHMN), contagion (CONTAG), largest patch 
index (LPI), mean Euclidean nearest neighbor index 
(MENN), and cohesion index (COHE). Lee and oth-
ers(12) demonstrated that, at the landscape level, a 
higher interspersion and number of land use types 
may worsen water quality. At the class level, the 
metrics ED, LPI, and PD played an important role in 
the relationship between land use and water quality. 
Xu and others(13) stated that the variation of water 
physicochemical variables during the wet and dry 
periods is better described by landscape pattern 
metrics at the watershed scale. Uuemaa and oth-
ers(14) showed that for nutrients and biochemical 
oxygen demand (BOD), urban land use was the most 
important predictor. Particularly, for total nitrogen 
(TN), urban land use was accompanied by agricul-
tural land use and ED. For BOD, PD was also a criti-
cal predictor. 

Although many studies have correlated landscape 
patterns to water quality for different catchments 
worldwide, only a few studies have explored this 
relationship for sub-tropical streams in Southwest-
ern America(15-16). It is important to highlight that 
none of these studies evaluated the applicability of 
machine-learning techniques to this type of analysis. 

With the aim of identifying the main landscape met-
rics that most affect each different water-quality vari-
able at different watershed scales, we analyzed the 
relationships between seasonal water quality and 
landscape indexes at two Uruguayan watersheds 
characterized by different areas, using machine-
learning techniques. The specific objective of our 
study is four-fold: i) assess the spatio-temporal varia-
tion of physicochemical variables of river waters; 
ii) evaluate the landscape composition; iii) analyze 
the impacts of landscape metrics on water physico-
chemical variables, and iv) evaluate the applicability 
of machine-learning techniques to this analysis.  

 

2. Materials and methods 

2.1 Study areas 

To compare the watershed-size influence in the 
correlation between LULC changes and the water-
quality variables, this study was carried out in two 
different sizes watersheds: Del Tala stream, and 
San Salvador river.  

Del Tala stream watershed is in the northwest of 
Uruguay (between 31°14'21.9"S 57°22'48.7"W 
and 31°07'38.6"S 57°18'42.2"W) and is part of the 
Arapey Grande river watershed. The drainage area 
is 159 km2, and its main course has a length of 
23 km (Figure 1). It is characterized by its exclu-
sively agricultural and livestock use, where agricul-
tural activity occupies around 5,000 ha in the lower 
zone, extensive livestock farming of approximately 
11,000 ha and some 25 ha are dedicated to inten-
sive livestock (feedlot). In the 1990s, the main 
agricultural item was the rice crop, which was car-
ried out in rotation with pastures. In the last 15 
years, there has been a gradual diversification of 
agricultural rotation, including other summer crops 
(sorghum, corn and soybean). Given the character-
istics of the basin, various research projects have 
been studying it for more than 10 years, which 
have provided historical information regarding land 
use, agronomic management, and water quality. 
The crop management practices include no-tillage 
and supplementary irrigation.  

 

 

Figure 1. Study areas and water-quality sampling sites: 
a) Del Tala and b) San Salvador watersheds 

 

San Salvador river watershed is in Soriano (between 
33°51'27.1"S 57°30'05.8"W and 33°28'11.0"S 
58°23'59.3"W). It has an area of 3,118 km2, and the 
main course is 100 km long until it flows into the Uru-
guay river (Figure 1). It is a multi-use basin and can 

(a)

(b)
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be divided into three zones according to soil aptitude. 
The upper area is mainly used for livestock, the mid-
dle part is mainly an agricultural area, and the lower 
region is for urban use. Agricultural activity occupies 
76 % of the watershed area, followed by natural 
grassland with 16 %, and forestry and native forest 
occupy 3 % and 4 %, respectively(17). The main crops 
are soybeans, wheat, barley, corn, and sorghum. The 
area under irrigation is 1.3 % of the total surface(18). 
Extensive and intensive cattle raising (feedlots) and 
an important activity of dairy farms are frequent in this 
catchment. 

2.2 Water quality sampling collection and 
laboratory analysis 

In the Del Tala watershed, thirteen sampling cam-
paigns were carried out between February 2019 
and December 2021 in six monitoring sites, four on 
the main course (T1, T2, T3, and T4) and two on 
tributaries (DJ and DS) (Figure 1). With the aim of 
having an adequate amount of data for the analy-
sis, only DJ, DS, T3, and T4 stations were consid-
ered for this study. 

In the same period, sixteen sampling campaigns 
were carried out in the San Salvador watershed. 
Five of them were executed by the research team 
and the remaining eleven correspond to data col-
lected from the web database of the Monitoring 
Plan executed by the Ministry of Environment(19). 
The monitoring sites were eleven, seven on the 
main course (SS10, SS20, SS30, SS40, SS50, 
SS60, and SS65) and four on tributaries (SMA80, 
MA90, AG100, MG110) (Figure 1). 

In each sampling site, in situ pH, dissolved oxygen 
(DO) (mg/L), and temperature (T) (°C) were meas-
ured with a multiparametric probe. In addition, water 
samples were collected for analysis of fecal coli-
forms (FC) (UFC/100 mL), total suspended solids 
(TSS) (mg/L), biochemical oxygen demand (BOD) 
(mg/L), total phosphorus (TP), and nitrates (NO3-) 
(mg/L)(20-21). Due to the main activities of both water-
sheds, NO3-, TP, and TSS were the selected varia-
bles to conduct the correlation analysis between 
water quality and land use. 

In the Del Tala watershed, the data available are 
the result of sample analysis taken in triplicate at 
each site. However, in the San Salvador water-
shed, a single sample per site was collected, main-
taining the protocol used by the Ministry of Envi-
ronment(22). 

The statistical analysis was performed using the 
Past 4.03 software(23). Parametric analysis was 
executed using ANOVA with Tukey’s post hoc test. 

Non-parametric statistics such as Kruskal Wallis or 
Mann-Whitney U were used when the homogeneity 
of the variances was not verified. All tests were 
done with a confidence level of 95 %. 

2.3 Landscape metrics 

The landscape was characterized within each ba-
sin, classifying its LULC and quantifying the spatial 
structure of some of the identified patterns. 

2.3.1 Land use and land cover classification 

The process of land cover mapping implies land cov-
er classification using satellite imagery processed 
with different methods and algorithms(24). For this 
study, satellite imagery corresponds to Sentinel 2 
satellites from the Copernicus Programme from the 
European Space Agency(25). The Sentinel 2 imagery 
was obtained and processed in the cloud using the 
Google Earth Engine(26), a planetary-scale cloud-
computing platform for Earth science data and anal-
ysis. Sentinel 2 imagery was selected because it 
has good spatial (10/20 m), spectral (13 bands), and 
temporal resolutions (5 days), and is of free access. 

For both watersheds, crop seasons from 2019/20 
until 2021/22 were mapped to determine LULCs for 
winter and summer. Winter crops are sowed during 
the end of fall, flowering during spring, and are 
harvested at the end of spring. Therefore, for 
LULCs determination in the winter and especially 
winter crops detection like wheat and barley, the 
analyzed period comprises between June and 
December. In summer, crops like corn and soy-
bean are sowed during spring, flowering during 
summer, and are harvested in fall. So, to detect 
these, the analyzed period comprised between 
October and May. 

It was possible to identify different LULCs in an 
area when vegetation indices time series were 
analyzed. Each LULC has its characteristic photo-
synthetic activity dynamic through time, called 
temporal profile(27); when analyzing the different 
vegetation time series for an area, it was possible 
to discriminate the different LULCs in it. 

For this study, it was decided to work with the EVI2 
index time series(28): 

𝐸𝑉𝐼2 = 2.5 ∙
𝑁𝐸𝐴𝑅 𝐼𝑁𝐹𝑅𝐴𝑅𝐸𝐷 − 𝑅𝐸𝐷

𝑁𝐸𝐴𝑅 𝐼𝑁𝐹𝑅𝐴𝑅𝐸𝐷 + 2.4 ∙ 𝑅𝐸𝐷 + 1
 

 

These were obtained from all available images for 
each period. A stack of EVI2 images was generated 
for each watershed and season, which was classi-
fied into ten clusters using K-means(29) so that each 
pixel had an assigned membership cluster (1, 2, 3, 
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etc.). The EVI2 time series were extracted for each 
image stack in a grid of regular points within each 
watershed. For all points belonging to the same 
cluster, a chart of the median signature of that clus-
ter was generated, resulting in 10 median signa-
tures. A hierarchical cluster analysis (HCA) was 
carried out to determine which median signatures 
were most similar and may belong to the same type 
of LULC(30). 

Furthermore, the t-distributed Stochastic Neighbor 
Embedding (t-SNE) technique(31) was used to de-
termine the classification quality with K-means. 
This non-linear dimensionality reduction technique 
allowed the visualization of high-dimensional data 
(in this case, time series) in a 2- or 3-dimensional 
space. t-SNE was used to generate graphs to vis-
ualize how well K-means clustering performed. 
Once the median signatures for each cluster were 
obtained, the shape of each signature was visual-
ized and compared against a reference signature 
of a LULC class (agricultural crop, water, native 
forest, afforestation, forage resources, etc.) to de-
termine which LULC the median signature most 
resembles and assign it accordingly. 

The reference signatures were obtained from LULC 
maps (2018, 2020/21) generated by the National 
Directorate of Natural Resources (DRNR) of the 
Ministry of Livestock, Agriculture and Fisheries 
(MGAP)(32-33). 

To evaluate the map accuracy, F1 score was cal-
culated(34): 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑃 ∙ 𝑅

𝑃 + 𝑅
 

where P is the precision and R is the recall, and 
are respectively equal to: 

𝑃 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

𝑅 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

F1 score ranges between 0 and 1; the closer to 1, 
the higher the map accuracy. 

The classified maps were also visually validated 
using Google Earth to see where these classes fall 
to determine, based on knowledge of the study 
area, if it was expected to have that type of LULC 
in that place. Lastly, HCA determined which clus-
ters were most similar and could belong to the 
same LULC, thus merging them. 

The LULC categories detected in the watersheds 
were agriculture (A), forage resources in agricul-

ture paddocks (FRAP), forage resources in riparian 
zones (FRRZ), forestry (F), forage resources (FR) 
and water (W). A category included areas where 
crops like corn, soybean, barley, wheat, and others 
are present. F included areas with native forests 
and forests implanted with eucalyptus and pines. 
FRAP considered agricultural areas with a forage 
crop in that season. FRRZ were riparian zones 
with forage resources. FR were other forage re-
sources detected. W comprises areas with water 
bodies like rivers and water dams. 

2.3.2 Landscape metrics calculation 

Landscapes can be characterized quantitatively 
through different metrics at different scales. Within 
a geographic area, landscape metrics quantify the 
spatial structure of patterns and, historically, are 
indices for categorical land cover maps(35). Com-
position and configuration are the two fundamen-
tals that are quantified with landscape metrics. 
There are hundreds of metrics to quantify them 
both, but the majority measure five basic compo-
nents: adjacency, amount, area, distance, and 
perimeter. There are three levels on which metrics 
can be calculated: at patch level, for each patch 
individually; at the class level, aggregated metrics 
are computed for all patches of the same class, 
and at a landscape level, aggregated metrics for all 
patches in that landscape are calculated(35). Previ-
ous studies have adopted several metrics to repre-
sent the landscape(11)(14)(36-39). 

To avoid the use of metrics that may provide re-
dundant information, we selected the following 
metrics that in previous studies were correlated to 
nutrients and/or sediments: land cover (LC), land-
scape proportion (LP), mean Euclidean nearest 
neighbor distance (MENN), mean patch shape 
ratio (MPSR), patch density (PD), and Shannon 
index (SI). LC [ha] is a class-level metric that 
measures the area of all patches belonging to a 
class. LP [%] is a class-level metric that measures 
the percentage of the landscape belonging to a 
specific class. MENN [m] is a class-level metric 
that calculates the mean Euclidean nearest neigh-
bor (ENN) distance of all patches belonging to a 
class. ENN measures the distance to the nearest 
neighboring patch of the same class. MPSR [none] 
is a class-level metric that calculates the mean 
SHAPE of all patches belonging to a class. SHAPE 
is the ratio between the patch's actual perimeter 
and the patch's hypothetical minimum perimeter. 
PD [n/100 ha] is a class-level and landscape-level 
metric that calculates the number of patches per 
unit area by class and landscape. SI [none] is a 
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landscape-level metric that considers the number 
of classes and the abundance of each class. It is a 
diversity metric. 

Landscape metrics R package(40) was used to 
calculate the selected metrics. This package is an 
R version of the FRAGSTATS software(41). The 
calculations were made in an R notebook in 
Google Colab(42). 

2.3.3 Sub-watershed delimitation 

The landscape metrics previously described were 
calculated within the sub-basin area upstream of 
each water-quality sampling site at both catch-
ments. Hence, the water quality measured at those 
sites is characteristic of its own contributor sub-
watershed. Combining the digital terrain model 
(DTM), contour curves, and the hydrographic net-
work, it was possible to identify the basin ridgeline 
that delimitates the sub-basin per monitoring site. 

The DTM used has a pixel of 2.5 × 2.5 meters and 
was obtained from Infraestructura de Datos Espa-
ciales del Uruguay (IDEuy)(43). The hydrographic 
network was obtained from IDEuy and the Ministry 
of Environment. Using the DTM, contour curves 
every 5 meters were extracted for each watershed 
with QGIS 3.16.11-Hannover software. 

2.4 Machine-learning techniques 

To evaluate the correlations that exist between 
LULC and water quality in both watersheds, partial 
least squares regression (PLSR) and random for-
est (RF) models were adopted as linear and non-
linear techniques, respectively. Furthermore, the 
Shapely Additive Explanations (SHAP) method 
was used to rank the variables in terms of their 
degree of influence in predicting water quality vari-
ables (TP, NO3-, TSS). 

The monthly time series of the three pollutants 
under study were seasonally aggregated (summer: 
from October till April, winter: from May till Decem-
ber) to be related to the LULC information. The 
years 2019, 2020, and 2021 were considered. The 
minimum, maximum, and mean concentrations for 
each year were calculated and used for the analysis. 

For each experiment, the input variables (X) are 
generated from the land use indexes, neglecting 
the land use classes that cover less than 1 % of 
the watershed area. In particular, the two sets of 
input variables are related to the indexes calculat-
ed per class (Xclass) and the ones computed for the 
entire watershed (Xlandscape). The output variables 
(Y), three per experiment, are the minimum, mean, 
and maximum of each pollutant. 

Sixty-six experiments were run for the San Salvador 
watershed (3 pollutants × 2 seasons × 11 monitor-
ing sites). Twelve experiments were run for the Del 
Tala watershed (3 pollutants × 1 season (summer) × 
4 monitoring sites). 

2.4.1 Partial Least Squares Regression (PLSR) 

The PLSR model computes the relationship be-
tween two sets of variables, the matrix 𝑋𝑚×𝑛, 
which is made of m variables (columns) and n 
objects (rows), and a response vector 𝑦𝑛×1. As 
well as principal component analysis (PCA), PLSR 
can detect a few linear combinations (components) 
of the original x-values that describe most of the 
information carried by y. In contrast to PCA, only 
the most significant linear combinations are con-
sidered in the PLSR-regression equation. This is 
mathematically calculated by maximizing the co-
variance between y and all possible linear func-
tions of x(44). 

In this study, the Python hoggorm package was 
used for the PLSR implementation and run(45). 

2.4.2 Random Forest (RF) 

RF is a supervised machine-learning technique 
able to depict non-linear links(46). In this work, we 
used this model as a regressor: it is made of many 
decision trees (called weak learners) that are used 
to predict a value (ensemble model), and its re-
sponse is the mean of the predicted values(47). This 
approach overcomes the limitations of a single 
decision tree in terms of noise and accuracy(48). RF 
is considered a white box model since its resulting 
internal structure can be easily visualized and in-
terpreted(49). 

In this study, the Python library scikit-learn was 
used for the model implementation and run(50). 

2.4.3 Shapely Additive Explanations (SHAP) 

The SHAP method was carried out to evaluate the 
contribution (importance) of each input variable to 
the prediction (model output)(51). It is based on the 
game's theoretically optimal Shapley Values(52). 
This technique was chosen over the given feature 
importance computed by RF for three main rea-
sons: i) it is model agnostic, i.e., it can be calculat-
ed for any model allowing an unbiased compari-
son; ii) it not only provides the importance of each 
variable, but it can also compute the sign (positive 
or negative) of such contribution; iii) several stud-
ies on environmental matters have recently cor-
roborated its success(53-55). In this study, such 
analysis was implemented using the SHAP Python 
package. 
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Table 1. Map classification performance for (a) San 
Salvador and (b) Del Tala watersheds 

(a) SAN SALVADOR 

SUMMER 

LULC PRECISION RECALL F1-SCORE 

AGRICULTURE 0.75 0.89 0.82 

FORAGE RESOURCES 0.68 0.46 0.55 

FORESTRY 0.83 0.76 0.79 

WEIGHTED AVERAGE 0.79 0.79 0.78 

WINTER 

LULC PRECISION RECALL F1-SCORE 

AGRICULTURE 0.77 0.48 0.59 

FORAGE RESOURCES 0.61 0.64 0.62 

FORESTRY 0.6 0.8 0.69 

WEIGHTED AVERAGE 0.68 0.65 0.64 

 

(b) DEL TALA 

SUMMER 

LULC PRECISION RECALL F1-SCORE 

WATER 1 0.76 0.86 

AGRICULTURE 0.54 0.74 0.63 

FORAGE RESOURCES 0.92 0.85 0.89 

WEIGHTED AVERAGE 0.86 0.83 0.84 

 

 

 

Table 2. San Salvador river watershed land use and 
land cover (LULC) categories area for winter 2021 and 

summer 2021/22 

LULC 

SUMMER WINTER 

AREA 
(ha) 

PROPORTION 
( %) 

AREA 
(ha) 

PROPORTION 
( %) 

WATER 977 0.3 947 0.3 

AGRICULTURE 155540 49.9 102683 33.0 

FORESTRY 52585 16.9 28799 9.2 

FRAP 57544 18.5 110787 35.6 

FRRZ 44814 14.4 68245 21.9 

TOTAL 311460    

 

In the San Salvador watershed, during winter, the 
main LULCs in area proportion in a decrease order 
are FRAP, A, FRRZ, F, and W. FRAP and FRRZ 
are forage resources, and they occupy almost 
60 % of the area (Table 1). In summer, the agricul-
tural area increased to 50 %, while the forage re-
sources (FRAP + FRRZ) decreased to 33 % of the 
area (Table 2). This is explained by the fact that 
the area for summer crops is greater than for win-
ter crops. Therefore, the areas not sown with crops 
in winter are occupied with forage resources like 
pasture. It is important to highlight that W occupies 
less than 1 % of the area, indicating the scarcity of 
irrigated crops. 

 

Figure 4. Land use/land cover map for a) winter 2021 and summer 2021/22 for San Salvador, and for b) summer 
2021/22 for Del Tala watersheds 

 

For the Del Tala watershed, only summer areas 
were detected. As this watershed is smaller than 
San Salvador, it is characterized by a smaller agri-
cultural area (Table 3). The summer crop area is 
almost 30 %, and the forage area (forage re-
sources + FRAP) is almost 70 %, contrasting with 

50 % and 33 % of crops and forage resources in 
San Salvador. The W area is greater than in San 
Salvador, occupying 3 % of the area, and as 
shown in Figure 4, mainly this higher percentage is 
due to irrigation. 

(a) (b)
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Table 3. Del Tala watershed land use and land cover 
(LULC) categories area for summer 2021/22. 

LULC AREA (ha) 
PROPORTION 

( %) 

WATER 480 3.2 

AGRICULTURE 4231 28.3 

FR 9046 60.5 

FRAP 1207 8.1 

TOTAL 14964  

 

A sub-watershed delineation was carried out up-
stream of each water-quality sampling site to quan-
tify the proportion of landscape metrics contributing 
to the water quality measured at that point. In the 
Supplementary Materials, Tables S1 and S2 pre-
sent the sub-watershed area for each site. As an 
example, Figure 5 shows the sub-watershed delim-
itations for the Del Tala T4 site and San Salvador 
SS65 station. We selected Del Tala T4 and San 
Salvador river watershed SS65 sites as repre-
sentative sub-basins since they are the biggest 
ones, and are located close to the basin closure 
point. Landscape metrics of the different LULCs 
(class scale) are shown in Tables 4-6, and PD and 
SI for both sub-basins are presented in Table 7 
(landscape scale). 

 

 

Figure 5. Example of sub-catchment delineation: a) Del 
Tala-T4 and b) San Salvador-SS65 sites sub-basins 

 

PD is a metric that represents the level of fragmenta-
tion of each LULC category: the higher the value, the 
greater the fragmentation. Those LULCs with higher 
values have their total area distributed in a greater 
number of patches than others with a lower PD. 

 

Table 4. San Salvador SS65 site winter 2021 
landscape metrics (land cover: LC, landscape 

proportion: LP, mean Euclidean nearest neighbor 
distance: MENN, mean patch shape ratio: MPSR, patch 

density: PD) for each LULC category 

LULC 
LC 
(ha) 

LP 
(%) 

PD 
(n/100ha) 

MENN 
(m) 

MPSR 

WATER 531 0.2 0.152 582.5 1.364 

AGRICUL-
TURE 

7550
9 

31.4 1.450 82.7 1.524 

FORESTRY 
2187

3 
9.1 4.413 99.3 1.405 

FRAP 
8670

8 
36.0 6.577 63.3 1.436 

FRRZ 
5599

0 
23.3 6.239 63.8 1.511 

 

Table 5. San Salvador SS65 site summer 2021/22 
landscape metrics (land cover: LC, landscape 

proportion: LP, mean Euclidean nearest neighbor 
distance: MENN, mean patch shape ratio: MPSR, patch 

density: PD) for each LULC category 

LULC 
LC 
(ha) 

LP 
(%) 

PD 
(n/100ha) 

MEN
N (m) 

MPSR 

WATER 566 0.2 0.164 599.0 1.355 

AGRICUL-
TURE 

11524
4 

47.9 1.891 69.8 1.527 

FORESTRY 40702 16.9 5.835 75.1 1.440 

FRAP 46413 19.3 8.955 67.1 1.431 

FRRZ 37685 15.7 8.870 63.9 1.493 

 

Table 6. Del Tala T4 site summer 2021/22 landscape 
metrics (land cover: LC, landscape proportion: LP, 
mean Euclidean nearest neighbor distance: MENN, 

mean patch shape ratio: MPSR, patch density: PD) for 
each LULC category 

LULC 
LC 
(ha) 

LP 
(%) 

PD 
(n/100ha) 

MEN
N (m) 

MPSR 

WATER 111 4.3 0.620 284.9 1.415 

AGRICUL-
TURE 

795 30.8 5.079 69.4 1.493 

FR 1453 56.3 5.312 48.3 1.525 

FRAP 220 8.5 27.837 41.1 1.428 

 

Table 7. Patch density average and Shannon index for 
Del Tala-T4 and San Salvador-SS65 sites (summer 

season 2021/22) 

SUB-WATERSHED PD (N/100ha) 
SHANNON 

INDEX 

SAN SALVADOR - SS65 25.71 1.22 

DEL TALA - T4 28.55 0.98 

 

In the San Salvador river watershed, these LULCs 
were forage resources (FRAP and FRRZ), and the 
level of fragmentation is higher in summer when 
the agricultural area increases considerably com-

(a) (b)
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pared to winter. Considering the LULC of greater 
economic importance, such as agriculture, the 
value of PD is much lower than those of forage 
resources, 1.45 patches/100 hectares in winter and 
1.89 in summer, against values around 6 patch-
es/100 hectares and 9 in winter and summer for 
forage resources. This indicates that agriculture is 
much less fragmented compared to forage re-
sources. Analyzing the image of Figure 6, where 
these LULCs are shown, it is observed that for 
agriculture, the patches are much larger, more 
continuous, and compact, while for forage re-
sources, these are smaller, more isolated, and 
dispersed. 

Regarding the Del Tala watershed, PD had a dif-
ferent pattern from San Salvador since agriculture 
in summer is more fragmented. It is essential to 
mention that Del Tala is a less agricultural basin 
than San Salvador, with 30 % vs. 48 % of the area 
occupied by agriculture, respectively. Analyzing the 
forage resources class, the PD value is like agricul-
ture in FRRZ, while FRAP has a much higher PD 
value. 

 

Figure 6. Patches comparison of a) agricultural and 
b) forage resources of San Salvador - summer 2021/22 

 

MPSR has similar values between LULC and ba-
sins; therefore, no relevant conclusions can be 
inferred. For MENN, which indicates the average 
distance in meters at which the patches of a class 
are separated, the W class has the highest value in 
both basins, with values around 600m and 300m 
for San Salvador and Del Tala, respectively. This is 
because water occupies a small area at both ba-
sins, with few and distant patches. 

3.3 Linkage between water quality and land use 
classes 

The SHAP values were computed for the input 
variables of each experiment for both models, 
PLSR and RF. Therefore, the most influencing 
variables for predicting TP, NO3-, and TSS were 
detected and ranked. As an example, in Figure 7, 

the SHAP values obtained for PLSR and RF mod-
els are reported. In Figure 7(a), the SHAP values 
computed from PLSR to identify the most critical 
land use variables for predicting NO3- max at the 
DJ site in the Del Tala catchment are represented. 
In this plot, red dots depict high values of the input 
variables that positively impact the model out-
comes. In contrast, blue dots represent low values 
that may not have an influence or have a negative 
impact on model results. In Figure 7(b), the SHAP 
values obtained for RF used to predict TP mini-
mum, mean, and maximum at the site AG100 in 
the San Salvador watershed are reported as an 
example. The variables are ranked in terms of their 
degree of influence in predicting the pollutant un-
der study. The different colors represent the three 
statistics of TP (min., mean, and max.). It is im-
portant to underline that the range of the SHAP 
values is only bounded by the output magnitude 
range of the model explained. 

For the sake of brevity, in this manuscript we report 
a summary of the results obtained from all the 
experiments. In Figure 8, we report the number of 
times that each landscape metric resulted the most 
important one per pollutant, per season, at each 
sub-basin. 

As for SHAP values based on PLSR, no landscape 
metric can be considered the main pollutant con-
centration predictor. This is particularly true in the 
Del Tala watershed. Here, the most frequent met-
rics are PD, LC, and MPSR associated with differ-
ent land uses: A, FR, FRAP, and W. 

At the San Salvador watershed, depending on the 
sub-watershed considered, the most influencing 
variables are PD and MENN associated above all 
with A, but also with FRAP, F, and FRRZ. Fur-
thermore, at the San Salvador catchment, there is 
not a dominant predicted index for AG100, 
MG100, SS10, and SS30 sub-watersheds. It is 
also interesting that [A] PD is the most important 
predictor for the three pollutants under study. 
NO3- concentration is also well represented by [A] 
MENN. In winter, [FRAP] MENN and [A] PD are 
the most influencing variables of NO3- and TSS, 
respectively. While [A] PD, [FRRZ] MPSR and 
[FRRZ] LC are equally significant in TP concen-
tration prediction. The PD measures the number 
of land use patches within the basins; thus, frag-
mented uses could negatively impact water quali-
ty by generating higher pollutant loads. Particular-
ly in agricultural land uses, the negative effects on 
water quality are associated with the intensive 
use of fertilizers during the agricultural season 
and its mobilization to water courses by runoff. It 

(a) (b)
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runoff, rich in nutrients and sediments, flows into 
nearby water bodies and results in a sudden in-
crease in nutrient concentration, which can have 
negative effects on water quality(47). 

Another important aspect to highlight is that TP 
values were always higher than the limit imposed 
by the national regulations (0.025 mg/L) at both 
watersheds. This may be justified by the fact that 
most of the fertilizers used in Uruguay are phos-
phate-based(17). 

As for the correlation evaluated between LULC and 
water quality, we found that PD is one of the most 
influencing metrics in both watersheds and for both 
models. This outcome confirms the results ob-
tained by several studies(11-12)(37-38). Kearns (2005) 
stated that there were two factors: i) PD and distri-
bution, and ii) patch shape and landscape subdivi-
sion, which explained 85 % of the variation in their 
data set(38). The A land use is the most critical one 
at both catchments, and A and FRAP land uses 
are the most important ones for both algorithms. 
Previous studies found that cropland land use 
strongly correlates with water physicochemical 
variables at larger scales. This was also confirmed 
by our results at the San Salvador watershed, 
where A land use, mainly represented by PD, had 
an important impact on nutrients and TSS. This 
may be due to the extensive distribution of farm-
land across the watershed and it recommends that 
the control of agricultural non-point source pollution 
should focus on the agricultural management at a 
basin scale, such as the fertilizer use control and 
the conservation tillage extension(11)(13)(44). 

 

5. Conclusions 

In this study, with the aid of unsupervised machine 
learning techniques, we identified and ranked the 
main landscape metrics that most influence differ-
ent water-quality variables at different watershed 
scales. This aim was achieved by considering two 
Uruguayan basins of different sizes, San Salvador 
(3,118 km2) and Del Tala (160 km2). The main 
findings of this work can be summarized as fol-
lows: 

• In the spatio-temporal analysis of the physico-
chemical variables in both watersheds, Del Tala 
and San Salvador, TP was the only variable that 
did not comply with the national regulations 
(0.025 mg/L), while the NO3- concentration values 
met the reference value in all cases (10 mg/L). 

• During 2020 and 2021, when La Niña occurred, 
TP and TSS runoff was exceptionally high. 

• LULC was estimated for the San Salvador river 
watershed in winter 2021 and summer 2021/22, 
and for the Del Tala basin in summer 2021/22. In 
San Salvador, during the winter, 30 % of the area 
was identified as agriculture; while during the 
summer, the percentage of crops was approxi-
mately 50 % for San Salvador, and 30 % for Del 
Tala. 
• Landscape metrics were calculated for the most 
representative sub-basins. As expected, in the San 
Salvador river basin, forage resources were more 
fragmented (smaller, more isolated, and dispersed 
patches) than agriculture with much larger patches, 
more continuous and compact. Del Tala had the 
same pattern but only with FRAP, since FRRZ had 
a similar value to agriculture. It would be interest-
ing to look at the patch area metric besides the PD 
metric to analyze this difference more deeply. For 
other landscape metrics, no relevant conclusions 
can be made. 
• PD is one of the most influencing metrics for 
both watersheds and models. Agricultural was the 
most critical land use at both catchments, and 
agricultural with a forage crop land uses are the 
most important ones for both algorithms used. 
• Agriculture land use showed a stronger correla-
tion with nutrients and TSS at the San Salvador 
watershed (at larger scales). 

It is essential to mention that the adopted tech-
niques are valuable tools that can provide an ade-
quate overview of the water‐quality behavior in 
space and time, and the correlations between wa-
ter-quality variables and LULC. 
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Table S1. Sub-watershed delineation based on water-quality monitoring sites at Del Tala 

MONITORING 
SITE 

SITE NAME 
SUB-WATERSHED 

AREA (ha) 

T1 Del Tala Naciente 1,649 

T2 
Del Tala aguas abajo 

represa Tres Marías Gran-
de 

7,279 

T3 
Del Tala aguas abajo del 

área agrícola 
11,813 

T4 Del Tala Desembocadura 14,710 

DJ Juncal Desembocadura 2,581 

DS Sarandí Desembocadura 1,326 

 

 

Table S2. Sub-watershed delineation based on water-quality monitoring sites at San Salvador 

MONITORING 
SITE 

SITE NAME 
SUB-WATERSHED 

AREA (ha) 

SS10 Colonia Larrañaga 5,835 

SS20 Ruta 55, Km 39 26,388 

SS30 Perseverano 62,993 

SS40 Paso Zabala 83,245 

SS50 Paso Ramos 214,824 

SS60 Toma vieja OSE 225,690 

SS65 
Península Timoteo Ra-

mospe 
240,766 

SMA80 A.° San Martin 11,196 

MA90 A.° Maciel 34,600 

AG100 A.° del Águila 31,579 

MG110 A.° Magallanes 10,027 

 


