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Abstract 
National dairy evaluations use mostly multistep methods, where a nongenomic BLUP evaluation 
is followed by extraction of pseudo-phenotypes, genomic analyses, and merging nongenomic and 
genomic evaluations. With genomic preselection and many females genotyped, pseudo-
phenotypes are biased, and it is hard to accommodate female genotypes fully. Such problems were 
successfully solved in other species by ssGBLUP, but large biases and expensive computing were 
experienced in dairy. This paper documents several improvements that made ssGBLUP feasible 
for national dairy evaluations. The pedigree relationships account for inbreeding. The formulas for 
unknown parent groups involve relationships for genotyped animals, and the number of groups is 
small. Pedigrees and phenotypes are truncated. Large data is accommodated by the APY 
algorithm. Multibreed evaluation is possible with judicious choice of APY core animals. In tests 
with the US national data and up to 3.5 M genotypes, analyses by ssGBLUP showed minimal bias 
and superior stability of GEBV.  
 
Introduction  
Dairy genomic evaluations at the national level use mostly multistep methods (VanRaden et al., 
2009), where a nongenomic BLUP evaluation is followed by extraction of pseudo-phenotypes for 
genotyped animals, genomic evaluation for genotyped animals, and an index to merge genomic 
and nongenomic values. Accurate creation of the index is difficult, and many countries use an 
approximate index, e.g., assuming 20% of polygenic and 80% of genomic component.  
Over time as animals were genomically selected, BLUP became biased by pre-selection (Patry and 
Ducrocq, 2011; Masuda et al., 2018). Subsequently, pseudo-phenotypes are biased and require ad-
hoc corrections. Accommodating genotypes of females without double counting is difficult, 
potentially creating problems as now most genotyped animals are females. One alternative to the 
multistep method is ssGBLUP (Aguilar et al., 2010; Misztal et al., 2020) that is used in almost all 
species except dairy. It automatically accounts for genomic preselection, avoids calculating 
pseudo-phenotypes, and accommodates male and female genotypes without double counting. In 
dairy, ssGBLUP was applied as early as 2010 by Aguilar et al. (2010) and more recently by 
Masuda et al. (2018) and Bradford et al. (2019); however, the evaluations were biased in all the 
cases. Another problem was a relatively large computing time due to slow iteration. Recently, two 
studies looked at an evaluation using Holsteins only (Cesarani et al., 2021) and multibreed using 
5 breeds (Cesarani et al., 2022), and evaluations were nearly unbiased in both cases. An additional 
study compared evaluations in the last study with the official CDCB evaluations (Mota et al., 
2022). That study found that the reliability of ssGBLUP was up to 0.07 higher, and stability was 
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up by 0.12 higher. Subsequently, the current implementation of ssGBLUP seems beneficial for the 
routine evaluation in dairy cattle. The purpose of this paper is to describe steps that made ssGBLUP 
unbiased, accurate, and computationally efficient. 
 
Materials & Methods  
Data. Recently, several ssGBLUP evaluations for milk, fat, and protein were run with the CDCB 
data, only for Holsteins (Cesarani et al., 2021) or for five dairy breeds altogether that included 
Holstein, Jersey, Ayrshire, Brown Swiss, and Guernsey animals (Cesarani et al., 2022). Genotyped 
animals used in the analyses ranged from 800k to 3.9 million. The developments and 
improvements required to make ssGBLUP a suitable method for dairy evaluations are described 
below. 
 
Compatibility between pedigree and genomic relationships. To avoid biases, pedigree and 
genomic relationships need to be compatible. Standard scaling is by a linear transformation of the 
genomic relationship matrix (G) for equal mean with the pedigree relationship matrix (A) (Vitezica 
et al., 2011). While A is affected by the completeness of pedigree, G is not. Therefore, an important 
part of scaling is accounting for inbreeding in the pedigree relationships. If pedigrees are missing, 
the inbreeding of animals with missing parents is calculated as 0, so accounting for nonzero 
inbreeding of missing parents (VanRaden, 1992) could provide additional compatibility.  
 
Unknown Parent Groups (UPG). Under selection, the merit of missing parents over time needs 
to be accounted for. Early studies in ssGBLUP accounted for UPG only in A, resulting in slow 
convergence and biases. Later studies found that a reasonable option is also considering UPG for 
pedigree relationships for genotyped animals (A22). Many BLUP evaluations use 100s of UPG. 
With UPG in A22, there is not enough information to account for many groups, and considerably 
reducing the number of groups was a good option to reduce bias.  
 
Interaction among pedigree, data truncation, and UPG. In general, the additive information 
decays fast with subsequent generations, and old data can be discarded without losses in accuracy 
for new animals but with gains in computing time. Including more than 2 generations of data with 
additional 2 generations of pedigree did not improve the accuracy for young animals and 
sometimes even lowered it (Lourenco et al., 2014; Cesarani et al., 2021). The broiler industry uses 
at most 3 generations of data despite many more available. Potential reasons for lower accuracy 
with older data are changing definitions of traits, model adjustments, and poor convergence for the 
solutions for young animals. Additionally, age adjustments vary over time as cows are indirectly 
selected for early calving. Truncation of old pedigrees eliminates the effect of missing pedigrees 
prior to truncation and reduces the number of needed UPG. If the number of generations is small, 
accounting for inbreeding is less or not critical.  
 
Metafounders (MF) in ssGBLUP. MF are generalizations of UPG with scaling and inbreeding 
plus covariances accommodated (Legarra et al., 2015). In regular scaling, G is scaled for 
compatibility with A22. With MF, G is created with 0.5 gene frequencies, and pedigree 
relationships are adjusted for compatibility with G. Variance and covariances across MF 
potentially account for inbreeding of unknown parents and relationships among unknown parents. 
While MF did very well in simulations, problems with parameter estimation are still under 
investigation in real populations. 
  



Large number of genotypes. The dairy populations accumulated a large number of genotypes, and 
many algorithms exist that can support that number in single-step methods (Misztal, 2018). All of 
them exploit the fact that the rank of genomic computations (based on SNP or G) is limited by the 
number of SNP (usually 60k) and by the small dimensionality of G in populations with small 
effective population size. This dimensionality is about 15k in dairy cattle (i.e., 15k core animals). 
With the APY algorithm (Misztal, 2016), which relies on the limited dimensionality of G, 
calculations have linear computing and storage costs past the number of core animals. An 
advantage of APY is the low cost and easy application of UPG. A disadvantage is some 
fluctuations of GEBV with the choice of core animals, which can be handled by keeping the core 
constant. An important part of the evaluation is pruning genotypes. While the number of genotyped 
animals may be very high, those without progeny or phenotypes can be eliminated from ssGBLUP 
evaluations, reducing computing costs. Predictions for omitted animals by indirect predictions can 
be as accurate with large data sets as when they are included in the model (Tsuruta et al., 2021). 
Another factor influencing computations is the blending of G, used to avoid the singularity of G. 
Blending with A22 was costly; however, computing coefficients separately for core and noncore 
animals is highly efficient. Blending with 0.01I is also efficient without affecting accuracy. 
  
Other issues. Many other issues are remaining in the dairy ssGBLUP evaluations that are not 
discussed here but have been addressed elsewhere. They include using external information from 
Interbull (Guarini et al., 2019), exploiting putative QTN (Misztal et al., 2020), using purebred and 
crossbred information combined (Misztal et al., 2022), and approximating accuracies of GEBV 
(Bermann et al., 2022).   
 
Results  
Holsteins (Cesarani et al., 2021). Phenotypes were truncated for cows recorded before 1980, 
1990, or 2000, and pedigrees were truncated to 2 or 3 generations beyond phenotyped cows. Two 
UPG formulations were used, the QP transformation for A (UPG1) or A and A22 (UPG2). With 
forward prediction, reliabilities were calculated for bulls and predictivity for cows. Only genotypes 
for contributing animals were used (about 800k). With UPG2, reliabilities and accuracies were the 
same with all truncations. Inflation was minimal as the b1 parameter was close to 1.0. With simple 
UPG, reliabilities were smaller and varied with truncation.  
 
Five breed analyses (Cesarani et al., 2022). Holstein, Jersey, Ayrshire, Brown Swiss, and 
Guernsey data were analyzed separately and altogether in a model with UPG2, truncation of 
phenotypes recorded before 2000, and 3 generations beyond phenotypes. The total number of 
genotyped animals was 3.9 million. When the multibreed evaluation used 15k randomly selected 
core animals in the APY algorithm, the reliabilities were lower for the smaller breeds than in the 
single-breed analyses. When core animals were selected to include 5k animals of each smaller 
breed and 15k of each Holstein and Jersey, the reliabilities were close to those from single breeds, 
and they were higher for Jerseys. One explanation is that the Jersey population included Holsteins 
in the past. In all cases except for the smallest breeds, the inflation was low (i.e., b1 close to 1.0).  
 
Official comparisons.  Evaluations for Holstein bulls from the previous analyses were compared 
with official multistep evaluations (MS) by CDCB (Mota et al., 2022); the latter were computed 
using different weights for SNP in a nonlinear approach, whereas ssGBLUP assumed equal 
weights for SNP. For milk, R2 based on DYD for raw MS was 0.07 lower than for ssGBLUP. After 



age adjustments, this difference reduced to 0.01. Stability of evaluations was calculated by 
correlations of GEBV derived with 2017 and 2021 data.  The stability for MS was 0.86 (0.89 with 
correction for age). The stability for ssGBLUP was 0.90 (0.92 after age correction). Regression 
coefficients were close to 1.0 for both ssGBLUP and MS predictions.   
 
Discussion  
The results for reliability and stability indicate a dilemma on how to judge an evaluation system. 
If DYD is derived from BLUP, it is biased even for bulls with many daughters. Also, GEBV by 
unadjusted MS are biased. Subsequently, it is not clear whether adjustments for age compensate 
GEBV, DYD, or both. In terms of stability, ssGBLUP was ahead of MS. After many developments 
as described, ssGBLUP is finally ready for implementation at the national level. This method 
provides evaluations that are possibly more accurate than the current one, does not require 
adjustments, and is simpler to run. Further improvements of accuracy can be expected with the 
inclusion of external Interbull data and possibly weighing SNP differently.  
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