

CULTIVOS DE COBERTURA EN ESQUEMAS AGRÍCOLAS

G. Cardozo¹, W. Ayala¹, E. Barrios¹, N. Serrón¹, J. Terra², G. Cantou²

ANTECEDENTES

En los últimos años la agricultura de secano se ha enfrentado a una expansión del área hacia zonas no tradicionales y a un aumento en la intensidad de cultivos por unidad de superficie. El cultivo de soja ha tenido un rol protagónico en este proceso con un crecimiento explosivo desde la zafra 2002/2003. Si bien parte del área agrícola se realiza bajo la modalidad de doble cultivo (trigo/soja), este presenta algunas limitantes modelo determinando que una parte importante del área agrícola no tenga cobertura durante el invierno. A su vez este esquema de producción levanta interrogantes sobre la sustentabilidad de los recursos naturales involucrados.

En este contexto la inclusión de cultivos de cobertura en secuencias agrícolas representa una opción en el diseño de los sistemas de producción. A diferencia de los abonos verdes, los cultivos cobertura no son incorporados al suelo ni son cosechados (Ruffo y Parsons, 2003). La inclusión de los mismos pretende reducir los tiempos en que el suelo permanece sin cobertura de forma de prevenir/reducir la erosión del suelo, actuando en la captura de nutrientes móviles o incorporando nitrógeno al sistema vía fijación biológica (Ernst, 2004). Otro de los grandes objetivos de los cultivos de coberturas es mantener o incrementar el contenido de materia orgánica del suelo, clave en los sistemas de bajo retorno de residuos con alta frecuencia del cultivo de soja (Clérici et al., 2004), que permite mejorar la estructura del suelo y la infiltración de agua (Kindernecht et al, 2004). De igual manera las coberturas invernales pueden reducir la oportunidad de establecimiento de malezas, reducir temperatura del suelo y la evapotranspiración.

En este artículo se presenta información referida al desarrollo de los diferentes materiales evaluados como cultivos de cobertura, la información sobre características de suelo y el impacto de los cultivos de coberturas serán presentados en siguientes trabajos junto con los efectos en la producción agrícola del sistema.

OBJETIVO DEL EXPERIMENTO

El presente experimento se enmarca dentro de un proyecto elaborado en el marco del Plan Estratégico de Investigación 2011-2015 de INIA, y tiene como objetivos identificar opciones de cultivos de cobertura adaptadas a los suelos de la región Este, ajustar algunas variables críticas de su manejo agronómico y cuantificar su impacto en propiedades químico-físicas del suelo y la productividad posterior del sistema agrícola.

METODOLOGÍA

Se evalúan diferentes opciones de cobertura (especies) en dos momentos y métodos de siembra, al voleo antes de la cosecha y en siembra en línea luego de cosecha. Las especies а evaluar son: Trifolium vesiculosum, Trifolium alexandrinum, Trifolium subterraneum, Trifolium resupinatum, Vicia sativa, Raphanus sativus, Lolium multiflorum, Avena strigosa y Lupinus luteus. El diseño experimental utilizado es de bloques al azar (RCB) y arreglo de parcelas dividas, con repeticiones. Para el análisis estadístico de los datos se utilizó el paquete estadístico SAS.

El potrero tiene una historia de mejoramiento sobre campo natural, sobre el que se estableció un cultivo de soja en la primavera de 2011, utilizando una variedad del grupo 5.9. Previo a la siembra se hizo un análisis de suelo que presentó 8 ppm de fósforo (Met. Ácido cítrico), 1.9 meq Mg/100 g, 10 ppm NNO₃ y 0.30 meq K/100 g. Previo a la siembra el área se fertilizó con 100 kg/ha de Hyperfos (0-14/29-0).

La siembra al voleo se realizó el 19/4/2012, para todos los materiales con excepción de *Vicia sativa* y *Raphanus sativus* CCS-779 que se sembraron el 26/4/2012 y el 30/4/2012 respectivamente. La siembra en líneas se realizó con una sembradora de tipo experimental el 9/5/2012. En base a la disponibilidad de semilla de *Lupinus luteus* sólo se lo pudo incluir en la siembra en líneas. Asimismo, en ambas situaciones se incluye un testigo sin incorporación de ninguna especie.

Programa Nacional Pasturas y Forrajes, INIA Treinta y Tres

Programa Nacional Producción y Sustentabilidad Ambiental, INIA

INIA TREINTA Y TRES - Estación Experimental del Este Jornada Anual 2012 - Unidad Experimental Palo a Pique

Cuadro 1. Lista de especies y cultivares y procedencia y densidad de siembra utilizada.

Especie	Cultivar	Origen	Densidad de siembra (kg/ha)
Trifolium vesiculosum	Sagit (Glencoe EC1)	INIA	10
Trifolium alexandrinum	INIA Calipso	INIA	18
Trifolium subterraneum	Goulburn	Wrighston Pas	10
Trifolium resupinatum	LE 90-33	INIA	8
Vicia sativa	Barril	Fertiprado	45
Raphanus sativus	Brutus	Agritec – Euro Grass	14
Raphanus sativus	Reset	Agritec – Euro Grass	14
Raphanus sativus	CCS-779	USA	14
Lolium multiflorum	INIA Cetus	INIA	15
Avena strigosa	Calprose Azabache	Calprose	100
Lupinus luteus	Cardiga	Fertiprado	100

Determinaciones

- a) Disponibilidad de forraje y cobertura vegetal: Se determinó cada 30 días la acumulación de biomasa y la proporción de materia seca. Asimismo se realizó estimaciones a través de punto cuadrado para determinar la cobertura vegetal en diferentes momentos.
- **b) Composición Botánica:** Se separó otras especies vegetales que aparecían en las muestras, así como las fracciones hoja, tallo y bulbo al final del ciclo.
- c) Contenido de N en planta y otros nutrientes de interés: Las muestras de forraje disponible se analizaron para obtener datos de contenido de nitrógeno en planta y otros nutrientes.
- d) Agua en el suelo: Se midió en situaciones contrastantes, el contenido de agua en el suelo a fin del cultivo cobertura.
- e) Análisis de suelo: Se realizó análisis de suelo (C, N, propiedades físicas, etc.) para determinar las condiciones iníciales del suelo

y el impacto de cada cultivo de cobertura.

Algunas de estas determinaciones están proceso ya que en esta oportunidad se reporta la información sobre el período de cultivo de cobertura, y el experimento pasa ahora a su fase de cultivo agrícola.

RESULTADOS PRELIMINARES

a) Cobertura de suelo

La cobertura de suelo permite observar el nivel de establecimiento y la precocidad de los materiales.

En el cuadro 2 se presenta la información de cobertura medida en dos momentos (mayo y junio) de los materiales más precoces a fines de junio y de la totalidad a fines de julio. Los resultados del análisis de varianza fueron para el método de siembra (p1=0.0224, p2=0.1283) especie (p1<0.0001, p2<0.0001) e interacción método x especie (p1=0.0007, p2=0.0119) en el primer (p1) y segundo muestreo (p2) respectivamente.

Cuadro 2. Porcentaje de cobertura para los diferentes materiales y métodos de siembra en dos momentos luego de la siembra.

	1er. Mu	uestreo	2do. Muestreo	
Materiales	Voleo (15/5/2012)	Líneas (28/5/2012)	Voleo (26/6/2012)	Líneas (26/6/2012)
Trifolium vesiculosum Sagit (Glencoe EC1)	6 fgh	15 de	11 kl	21 ghjjk
Trifolium alexandrinum INIA Calipso	12 ef	26 a	28 ghi	32 gh
Trifolium subterraneum Goulburn	4 gh	18 cd	20 ijkl	33 fg
Trifolium resupinatum LE 90-33	7 fg	15 de	16 jkl	24 ghij
Vicia sativa Barril	2 gh	12 ef	21 hijk	27 ghij
Raphanus sativus Brutus	14 de	24 abc	58 cd	52 de
Raphanus sativus Reset	16 de	19 bcd	44 ef	48 de
Raphanus sativus CCS-779	4 gh	19 bcd	44 e	53 de
Lolium multiflorum INIA Cetus	25 ab	22 abc	65 bc	46 e
Avena strigosa Calprose Azabache	24 abc	24 abc	72 ab	79 a
Lupinus luteus Cardiga		11		30
Testigo sin sembrar	0 h	4 gh	91	12 kl

Nota: no se incluyó en el análisis a Lupinus luteus Cardiga

Al primer muestreo se observa una interacción significativa entre el método de siembra y la especie, con una tendencia a una mayor cobertura en la siembra en líneas exceptuando a Avena Calprose Azabache y Raigrás INIA Cetus. Dentro de la siembra al voleo, las especies más precoces fueron Avena y Raigrás. La siembra en líneas muestra niveles de cobertura más parejos. En general al primer muestreo las especies más destacadas fueron dentro de las leguminosas *Trifolium alexandrinum* INIA Calipso en líneas, *Raphanus sativus* Brutus en líneas, Raigrás INIA Cetus en ambos métodos al igual que, Avena Calprose Azabache.

En el segundo muestreo, se sigue registrando una interacción significativa entre el método de siembra y la especie, manteniéndose la tendencia de mayor cobertura para las especies sembradas en directa exceptuando a *Raphanus sativus* Brutus,y Reset y Raigrás INIA Cetus. La especie más destacada fue Avena Calprose Azabache en ambos métodos.

En general y teniendo en cuenta los momentos de siembra, dentro de las diversas opciones testadas las especies y cultivares que aparecen con un mayor crecimiento inicial y por ende una rápida cobertura de suelo son las gramíneas y los "nabos" de forma general. Entre las gramíneas, la Avena supera ampliamente al Raigrás, mientras que entre los cultivares de *Raphanus sativus* el más precoz es Brutus. A pesar que las leguminosas presentan un desarrollo más lento en general, se destaca el T. alejandrino en el comienzo de su ciclo.

b) Producción de forraje

La producción de forraje se evaluó en diferentes momentos a partir de la siembra. El

primer corte se realizó el 26 de junio para los materiales más precoces (Cuadro 3). Los materiales que permitieron corte fueron las tres varidedades de *Raphanus sativus*, Avena y Raigrás. La oportunidad de siembra más temprana a través del método al voleo mostró para todos los materiales que dieron corte con excepción de *Raphanus sativus* CCS-779 rendimientos superiores, mostrando la adaptación de estos a este tipo de siembra.

El segundo muestreo se realizó el 27 de julio. para todos los materiales sembrados. Comparando los métodos de siembra, la producción acumulada es similar para el promedio de todos los materiales excluyendo a Lupinus luteus (1396 y 1415 kg/ha MS para voleo y líneas respectivamente, Cuadro 4). Se destaca la producción de Avena, Raigrás y Raphanus por sobre las leguminosas en todas las condiciones. Las leguminosas muestran aporte en este momento independientemente del método de siembra utilizado.

A fines de setiembre se realizó el último muestreo de forraje, momento en el cual se evaluó el total de biomasa acumulado desde la siembra y la contribución de cada especie al total (Cuadro 5).

En referencia a los métodos de siembra evaluados, no se encontraron diferencias significativas entre los mismos para el total y para la contribución de cada especie. En cuanto a los materiales evaluados, sí se registraron diferencias significativas tanto en el total como en la contribución de la especie sembrada. No se registraron interacciones entre el método de siembra y las especies evaluadas por lo que la información se presenta para el promedio de los métodos y de las especies en forma independiente.

Cuadro 3. Biomasa acumulada desde la siembra al primer corte (26/6/2012) y tasas de crecimiento de los materiales más precoces en función de los días de crecimiento desde la siembra.

	Siembra	a al Voleo	Siembra en Líneas		
Materiales	Biomasa (MS kg/ha)	Crecimiento (MS kg/ha/día)	Biomasa (MS kg/ha)	Crecimiento (MS kg/ha/día)	
Raphanus sativus Brutus	1420	21	667	14	
Raphanus sativus Reset	1124	17	536	11	
Raphanus sativus CCS-779	411	6	751	16	
Lolium multiflorum INIA Cetus	589	9	196	4	
Avena strigosa Calprose Azabache	1131	17	767	16	

Nota: Para voleo son 68 días de crecimiento a partir del 19/4/2012 y para líneas son 48 días a partir del 9/5/2012

Cuadro 4. Biomasa acumulada al 27/7/2012 (segundo corte para los materiales más precoces y primer corte para los demás) y tasas de crecimiento de los materiales en función de los días de crecimiento, desde la siembra o desde el primer corte para los materiales más precoces.

	Siemb	ra al Voleo	Siembra en Líneas	
Materiales	Biomasa	Crecimiento	Biomasa	Crecimiento
	(MS kg/ha)	(MS kg/ha/día)	(MS kg/ha)	(MS kg/ha/día)
Raphanus sativus Brutus	2727	66	2055	20
Raphanus sativus Reset	2298	74	1922	57
Raphanus sativus CCS-779	1358	20	3048	85
Lolium multiflorum INIA Cetus	1512	49	1304	23
Avena strigosa CALPROSE Azabache	3196	78	3103	63
Trifolium vesiculosum Sagit (Glencoe EC1)	306	4	140	1
Vicia sativa Barril	309	4	486	5
Trifolim resupinatum LE 90-33	291	4	256	3
Lupinus luteus Cardiga			617	6
Trifolium alexandrinum INIA Calipso	564	7	428	4

Las especies más productivas resultaron ser Raphanus sativus Brutus y Avena strigosa Calprose Azabache. En un segundo nivel se ubicaron Raigrás y los restantes cultivares de Raphanus sativus. En cuanto a las leguminosas se destaca Trifolium alexandrinum. Las especies que menos contribuyeron en el período fueron Trifolium subterraneum y Vicia sativa. Cabe hacer notar

que el cultivar utilizado de *Trifolium* subterraneum es de ciclo largo, por lo que para ésto debieran considerarse cultivares de ciclo más corto. En referencia a *Lupinus* luteus, se puede mencionar que es una especie con escasa información a nivel nacional y mostró un aporte significativo casi similar a las especies más destacadas.

Cuadro 5. Biomasa total acumulada al 26/9/2012 (primer corte para trébol subterráneo, tercer corte para los materiales más precoces y segundo corte para los demás) total y contribución de la especie sembrada para todos los materiales y métodos de siembra.

Tratamiento	Forraje Total (MS kg/ha)	Especie sembrada (MS kg/ha)	
Especie	(MO Kg/Ha)	(ino kg/iia)	
Raphanus sativus Brutus	8561 a	8557 a	
Raphanus sativus Reset	6236 b	6236 b	
Raphanus sativus CCS-779	6194 b	6194 b	
Lolium multiflorum INIA Cetus	5398 bc	5381 bc	
Avena strigosa CALPROSE Azabache	9388 a	8885 a	
Trifolium vesiculosum Sagit (Glencoe EC1)	3498 de	2782 de	
Vicia sativa Barril	3377 de	2508 e	
Trifolim resupinatum LE 90-33	3930 cde	3282 de	
Lupinus luteus Cardiga	7704	7581	
Trifolium alexandrinum INIA Calipso	4441 cd	4246 cd	
Trifolium subterraneum Goulburn	2915 de	2320 e	
Testigo	2709 e	2709 de	
Método de Siembra	•		
Al voleo	5428	4996	
En línea	4870	4659	
Probabilidades		·	
Método de Siembra	0.0967	0.3188	
Especie	<0.0001	<0.0001	
Método de Siembra x Especie	0.6152	0.6613	
MDS 0.05	743	899	

Nota: no se incluyó en el análisis a Lupinus luteus Cardiga

c) Producción de biomasa subterránea de Raphanus sativus

Al momento de la quema del cultivo de cobertura se realizó un muestreo de la biomasa subterránea que produjeron los diferentes materiales de *Raphanus*. No se detectaron diferencias significativas entre los cultivares, ni entre los métodos de siembra, ni interacción entre ambos factores (Cuadro 6), siendo la producción promedio de 2050 kg/ha MS

Cuadro 6. Biomasa subterránea de cultivares de *Rapahanus sativus*, al final del período de evaluación.

Cultivar	kg/ha MS
Raphanus sativus Brutus	1967
Raphanus sativus Reset	1995
Raphanus sativus CCS-779	2192
Método siembra	kg/ha MS
Voleo	2343
Linea	1760
Probabilidades	
Método	0.3399
Especie	0.5137
Método x Especie	0.9022

CONCLUSIONES

En base a la información preliminar generada es posible mencionar:

- La Avena strigosa, el raigrás y los cultivares del género Raphanus se destacaron sobre el resto por su rápida cobertura del suelo y alta producción de materia seca
- No se detectaron diferencias en la producción total de forraje por los métodos de siembra.

- A nivel de las leguminosas Trifolium alexandrinum y Lupinus luteus superaron a las restantes
- Los efectos adicionales que las diferentes especies generan tanto en las propiedades físicas como químicas del suelo se evaluarán en la fase agrícola subsiguiente
- En base a los rendimientos de forraje acumulados, se abren oportunidades a los efectos de integrar la utilización con animales de parte del forraje teniendo un uso que no comprometa el objetivo principal del cultivo de cobertura

REFERENCIAS BIBLIOGRÁFICAS

Clérici, C., W. Baetghen, F. García Prechac, F. y M. Hill, 2004. Estimación del impacto de la Soja sobre erosión y carbono orgánico en suelos agrícolas del Uruguay. En XIX Congreso Argentino de Ciencia del Suelo. Paraná. Argentina.

Ernst, O. 2006. Efecto de una leguminosa invernal como cultivo de cobertura sobre rendimiento en grano y respuesta a nitrógeno en maíz sembrado sin laboreo. Agrociencia Vol. X No 1. pp. 25-35.

Kinderknecht A., Paparotti O. y Saluzzio M. 2004. Estudio de la erosionabilidad de un suelo vertisol mediante el uso de un simulador de lluvia. Actas XIX Congreso Argentino de la Ciencia del Suelo. Paraná. Entre Ríos.

Ruffo M. y Parsons A. 2003. Cultivos de cobertura en sistemas agrícolas. INPOFOS. Informes Agronómicos NÀ 21 pp. 13-20.

AGRADECIMIENTO

A las Empresas Agritec, Fertiprado y Wrighston Pas por proveernos de algunos materiales para la evaluación.