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ABSTRACT: Single Step methods combine pedigree rela-
tionships and marker genotypes in a single conceptual and 
streamlined framework based on extending animal model 
BLUP to include marker genotypes. The extension can be 
done because genotypes at markers follow covariances 
described by the pedigree. This results in a relationship 
matrix that combines pedigree and markers, called H. Fit-
ting H-1 in Henderson’s Mixed Model Equations gives the 
Single Step Genomic BLUP, which is a single estimator of 
breeding values that includes all available information. It is 
easily generalizable to multiple trait and many different 
models, including Bayesian regressions. Extensions to 
crosses are largely untested and may need theoretical de-
velopments. Single step is increasingly used in poultry 
breeding, for its ease of use, generality, and better accuracy 
than any competing method. Some results in poultry are 
discussed. 
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Introduction: Why Single Step 
 

“I am Mr. Wolf. I solve problems.” 
Reservoir Dogs 
 
Animal breeders are problem solvers. They have a 

long tradition of solving practical problems while at the 
same time keeping an eye on most recent technical devel-
opments. The paramount example is BLUP (and its cousin 
REML) that allows accommodating genetic evaluation for 
almost any species and set of traits, across very unbalanced 
data sets and possibly very different relatives. This is due to 
the use of state of the art theory (linear models, relationship 
matrices, quantitative genetics), and also because Hender-
son’s formulation of BLUP leads to the existence of very 
efficient algorithms. 

 
Genomic evaluation methods had been thoroughly 

tested in the last five years. Two main conclusions emerge. 
The first is that parametric methods (Bayesian regressions 
and GBLUP, which is a particular case of Bayesian regres-
sion) are the most efficient ones, in spite of their implicit 
assumptions such as linkage equilibrium across markers or 
additive marker action. The second is that accuracy in ge-
nomic predictions comes in two ways (Habier, 2010): better 
genetic relationships (VanRaden 2008; Hayes et al., 2009), 
as in GBLUP, and capture of major genes (DGAT1, IGF2) 
by markers (e.g., VanRaden 2009). GBLUP can capture 
these major genes but Bayesian regressions do an even 
better job. The existence of major genes varies by trait and 
species (e.g., in dairy cattle they only seem to exist for 
production traits). Increasing the marker density does not 

therefore improve the capture of these genes, because they 
do not seem to exist (e.g., VanRaden et al., 2013). 

 
Genomic selection is costly, in particular for small 

species. Key animals are typically genotyped. This breaks 
down the carefully constructed relationship matrix used in 
BLUP, and the Animal Model can no longer be used. Using 
sire or reduced animal models seems inadequate since se-
lection on females’ side will not be accounted for. There-
fore the current solution consists in projecting data of close-
ly related animals to create pseudo-data for genotyped ani-
mals. These close animals can be offspring (VanRaden and 
Wiggans, 1991; Garrick et al., 2009) or own performance, 
parents and offspring (Ricard et al., 2013). The projection 
usually involves a regular BLUP Animal Model evaluation 
(with pedigree) with post processing of results (e.g. Garrick 
et al 2009, VanRaden et al. 2009).. Later, the pseudo-data 
are feed to a genomic evaluation model.  

 
This process is called multiple step and is a suc-

cess in dairy cattle because pseudo-data for progeny-tested 
bulls are very precise. But this is not the case in most spe-
cies and this leads to several problems. First, it is clumsy. 
Clumsiness per se is not a problem, but induces to errors. 
For instance, a genomic evaluation for dairy bulls involves: 
(a) running the regular genetic evaluation and extracting the 
solutions, (b) computing for each record a record “correct-
ed” by estimates of environmental effects and cow’s dam, 
(c) averaging for each bull these corrected records across 
daughters, (d) giving a weight (or precision) to these aver-
ages (and usually this weight is an approximation), (e) 
running a genomic evaluation and sometimes (f) combining 
its results with (a). Getting all programs, each one with its 
intricacy, to run without fails is delicate.  

 
Second, and more important, it ignores or grossly 

approximates information. Many relatives of genotyped 
individuals are ignored (for instance the dam). Correction 
of records is done “as if” effects were estimated exactly. 
Precisions of pseudo-records are approximations, and co-
variances across pseudo-records are ignored. For instance, 
if two sires have their offspring in the same farm this in-
formation is ignored. Also, the genetic trend is tricky to be 
accounted for. 

 
Third, it does not propagate to non-genotyped an-

imals. For instance, candidates to selection are selected 
among offspring of elite males and females. Males benefit 
from genomic evaluation but females (which are them-
selves daughters of genomic males) do not. However, large 
selection pressures can be exerted on females. Fourth, it is 
affected by selection (Patry and Ducrocq, 2012). Pseudo-



data will be calculated “as if” there is no genomic selection, 
and therefore true genetic trend will be underestimated. 
This will also hamper comparison of EBV’s across genera-
tions. 

 
Fifth, and perhaps the most important one in the 

long term, the multiple step process cannot be generalized. 
Each of the animal model BLUPs for multiple traits, mater-
nal effects, competition models, random regression, thresh-
old models, and so forth, needs ad hoc adjustments to fit 
into multiple step methods. For instance, there is no easy 
way to create pseudo-data for competition effect models, 
because pseudo-data for each sire will be related across 
sires due to their progeny sharing pens. The random regres-
sion pseudo-data exists (Liu et al., 2004) but is quite com-
plex. Multiple trait de-regression for traits recorded in dif-
ferent sets of candidates (e.g. food conversion rate and daily 
growth) becomes very complicated, although doable (Liu et 
al., 2004). 

 
The joint pedigree and genomic  

relationship matrix H 
 
For these reasons, researchers have tried to com-

bine Animal Model BLUP with genomic evaluations in a 
streamlined, conceptually coherent, framework. VanRaden 
(2008) GBLUP fits naturally into existing BLUP software 
and methods (including threshold models, multiple traits, 
etc.). Therefore, a common idea was to extend genomic 
relationship matrices to all individuals (Misztal et al., 2009; 
Christensen et al., 2010). First attempt (Legarra et al., 2009) 
was naïf: substitute pedigree relationships 𝑨 by genomic 
relationships 𝑮, if they are available. In mathematical form 
(denoting subindex 1 for un-genotyped): 

𝑯 = 𝑨!! 𝑨!"
𝑨!" 𝑮        but this matrix makes little biological or 

mathematical sense. Two twins identified thanks to 𝑮 
would seem to produce offspring that are cousins and not 
sibs. Also, it can be shown that a dairy cattle evaluation 
with genotyped bulls would give the same results as with-
out genotypes with regular 𝑨 (Aguilar et al., 2010). A better 
way of considering the problem projects genomic relation-
ships into pedigree relationships (Legarra et al., 2009) or, in 
other words, works imputing missing genotypes, and this 
imputation is based on pedigree relationships (Christensen 
and Lund, 2010).  

 
The last derivation deserves a further look. Linear 

imputation based on pedigree relationships is akin to con-
sider genotype as a quantitative trait. Matrix 𝑮 is formed by 
a matrix with genotypes: 

 
𝑮 = 𝒁!𝑫𝒁!!  

 
where 𝒁! for the i-th animal consists in one row with, for 
the j-th loci, the genotype coded as −2𝑝! , 1 − 2𝑝! , 2 −
2𝑝!  for genotypes 𝐴𝐴,𝐴𝑎, 𝑎𝑎  and 𝑝! is the frequency of 
allele 𝑎. However, the genotype so coded is a quantitative 
trait (animals receive half their parents plus a Mendelian 
sampling) and therefore genotype of the non genotyped 

animals can be predicted: 𝒁𝟏 = 𝑨𝟏𝟐𝑨𝟐𝟐!𝟏𝒁𝟐 . However this 
prediction is inaccurate, in particular for animals far apart: 
𝑽𝒂𝒓(  𝒁𝟏 𝒁𝟐   = (𝑨𝟏𝟏 − 𝑨𝟏𝟐𝑨𝟐𝟐!𝟏𝑨𝟐𝟏)  𝑽       where 𝐕  contains 
2p!(1 − p!)  in the diagonal. The genomic relationship ma-
trix across non-genotyped individuals is something like 
𝒁𝟏𝑫𝒁𝟏!  , but the fact that imputation is not perfect and has 
error as above needs to be taken into account. Putting eve-
rything together results in  

 

𝑯 = 𝑨!! − 𝑨!"𝑨!!!!𝑨!" +   𝑨!"𝑨!!!!𝑮𝑨!!!!𝑨!" 𝑨!"𝑨!!!!𝑮
𝑮𝑨!!!!𝑨!" 𝑮

 

 
with inverse 
 

𝑯!𝟏 = 𝑨!𝟏 + 𝟎 𝟎
𝟎 𝑮!𝟏 − 𝑨!!!!

 

 
(Christensen and Lund., 2010; Aguilar et al. 2010). 

The inverse is particularly simple and rather sparse. It is 
composed of three parts: regular relationships 𝐀!!, genomic 
relationships 𝐆!! , and a correction 𝐀!!!!  to avoid double 
counting of genotyped animals. This 𝑯!𝟏  is particularly 
convenient because it can be fitted in BLUP in a straight-
forward manner: 𝑨!!, although in the hundreds of thou-
sands or millions, is very sparse; and dense submatrices 𝑮 
and 𝑨!! are of size number of genotyped individuals, which 
is typically rather small (in the thousands except for dairy 
cattle).  

 
A word needs to be said about imputation. Geno-

types of non-genotyped individuals can be imputed using 
other methods that consider linkage and Mendelian coher-
ence (AlphaImpute, FImpute, etc.). Typically this results in 
a single genotype for each individual. Then the genomic 
evaluation method proceeds as if all imputed animals are 
imputed exactly, ignoring the uncertainty of the imputation 
both within an individual and across individuals. This will 
result in severe biases. 

 
An example may clarify this point. Assume a very 

long complex pedigree and the final generation genotyped 
for one locus, with allelic frequency 𝑝 = 𝑓𝑟𝑒𝑞(𝑎). Due to 
only having one generation with genotypes and to the long 
and complex pedigree, best guesses of genotypes in the 
base animals will be nearly identical and equal to 2p, for all 
base animals. Therefore, using “best guess” of genotypes 
without taking uncertainty into account, all base population 
individuals will be treated by the genomic evaluation as 
identical (even if they have different phenotypic records), 
which will force them to have the same estimated breeding 
value, which is paradoxical. 

 
In practice, using imputed genotypes for all ani-

mals will bias and reduce the accuracy of EBV’s of indi-
viduals “far” from those being genotyped, and this is the 
reason why Hickey et al. (2011) obtained worse accuracies 
by imputing all individuals than using the Single Step. In 
addition, it seems a waste of resources imputing millions of 
females to evaluate thousands of males (an example will be 
shown later). 



 
Matrix 𝑯 has interesting aspects. It can be verified 

that is (semi)positive definite if 𝑮 is (semi)positive definite. 
If all animals are genotyped, then 𝑯 = 𝑮. If none is geno-
typed, 𝑯 = 𝑨. Also, it accommodates genomic information 
by tweaking pedigree information to get closer to genomic 
one. For instance, two non genotyped sibs will be made 
more related than 0.25 if their offspring is more related than 
0.125. 

 
Single Step GBLUP 

 
Because H is the covariance matrix of all individ-

uals, there is no need to use any pseudo-data. Regular deri-
vation of BLUP holds and the mixed model equations are, 
in the usual notation: 

 
𝑿!𝑹!𝟏𝑿 𝑿!𝑹!𝟏𝑾
𝑾!𝑹!𝟏𝑿 𝑾!𝑹!𝟏𝑾 + 𝑯!𝟏⊗ 𝑮𝟎

  𝒃
  𝒖

= 𝑿!𝑹!𝟏𝒚
𝑾!𝑹!𝟏𝒚

  

 
This is very desirable. Computation is very much 

streamlined (one set of equations for the whole process). 
Compared to regular BLUP, the only additional work is the 
construction of 𝑮!! − 𝑨!!!!, which can be easily encapsulat-
ed either in an external program or within the genetic eval-
uation. In addition, the general framework of BLUP holds 
and any model fit in BLUP (e.g., random regression or 
multiple trait models) can be fit in SSGBLUP. Variances 
can also be estimated by REML or Gibbs sampler proce-
dures.  

 
As discussed, 𝑯!!  is very sparse. For instance, the 

study of Chen et al. (2011) considered 290,000 chicken, 
4,000 of then genotyped. Imputing all genotypes would 
need 50,000 markers x 290,000 animals ≈   14.5 Gbytes. 
However, 𝑯!! contains 9 x 290,000 coefficients (from the 
𝑨!! part) and 4,0002 coefficients (from 𝑮!! − 𝑨!!!!), with a 
total of ≈ 0.019 Gbytes. This also lowers the computation-
al time. For this example, running the genetic evaluation 
(after imputing all animals) would have an associated cost 
proportional to 50,0002 operations, versus 4,0002 for Single 
Step GBLUP. 

 
Single Step versus Reduced Animal models. 

Wolc et al. (2011a,b) proposed the use of a Reduced Ani-
mal Model. The Reduced Animal Model can be used if 
there is only one generation of non-genotyped individuals 
after the genotyped individuals. This method assigns per-
formance of the (nogenotyped) progeny of genotyped indi-
viduals to their genotyped parents, and is equivalent to a 
Single Step in which pedigree starts at the genotyped indi-
viduals (Legarra et al., 2009). The authors also derived a 
Reduced Animal version of Bayesian Regressions, in which 
average phenotype of the offspring is a function of average 
genotype of the parents, which is more convenient than 
assigning this phenotype to either parent as with pseudo-
data.  

 
Compatibility of pedigree and markers. Quality 

control is of utmost importance, i.e., to avoid discrepancies 

between G and A. Even then, VanRaden (2008) and Vitezi-
ca (2011) showed that markers and pedigree relationships 
need to be compatible for the genomic evaluations to be 
unbiased; this was empirically verified in chicken by Chen 
et al. (2011).  This is true for the Single Step or any other 
genomic evaluation method, often implicitly. The kernel of 
the problem is that typically pedigrees go back more gener-
ations than markers, and therefore markers cannot “see” the 
effect of drift or selection. Also, discrepancies between A 
and G exists if pedigrees are incomplete. They seem unim-
portant when proven genotyped animals have large infor-
mation (e.g., in dairy) but can cause biases and convergence 
problems otherwise (Misztal et al., 2013). 

 
 There are a few solutions to this problem. The 

first is to cut off irrelevant information, and consider pedi-
grees and phenotypes from the last few generations, even 
increasing accuracy (Lourenco et al., 2014). If we are inter-
ested in genetic evaluations now, information (pedigree and 
also phenotypes) ten generations back is useless and only 
adds noise to the evaluation. The second is to force unbi-
asedness of the genomic relationship matrix by creating 
(“tuning”) a modified matrix 𝑮∗ = 𝑎 + 𝑏𝑮 ; where 𝑎  de-
scribes the existing average (pedigree) relationship at the 
time of genotyping, and 𝑏 the reduction in genetic variance 
due to drift and selection. This results in more accurate and 
unbiased predictions, both in simulated and real data (Vi-
tezica et al., 2011; Chen et al., 2011; Christensen et al., 
2012). The correction implicitly assumes a population mat-
ing at random and Christensen (2012) has suggested to 
“tune” 𝑨 (which makes accepted but false assumptions) to 
match 𝑮 constructed with 0.5 allelic frequencies. This G is 
independent of pedigree quality.  

 
Crosses. This is one of the most active areas of re-

search in genomic evaluations. First, there is a decision to 
be made concerning whether the marker effects are the 
same across the pure lines and their crosses (Ibanez-
Escriche et al., 2009; Zeng et al., 2013). This can be esti-
mated (Karoui et al., 2012). If they are the same, a relation-
ship matrix can accommodate all genotyped animals. In 
pure GBLUP methods, the way to construct this matrix is 
largely irrelevant (Strandén and Christensen, 2011). How-
ever, for Single Step the correct procedure to set up G ma-
trices (possibly with tuning) and H matrices is still far from 
being clear in crosses. Lourenco et al. (unpublished) work-
ing with simulated data obtained the best results with G 
constructed as for a single population. Alternatively, one 
could fix G at allelic frequencies of 0.5 and tune A, extend-
ing Christensen’s (2012) methodology. Recently, Christen-
sen et al. (in press) suggested separating the effects in the 
F1 in pure breed gametes, and fit separate H and G matrices 
within breed. This assumes that marker effects are different 
across breeds. At any rate, a general model accommodating 
crosses is sought, and testing in real data sets is much need-
ed. Note that the same problems apply to multiple step 
methods, which proceed by assuming that pure lines are 
completely unrelated. 

 
 



Bayesian regressions. Bayesian regressions 
(BayesA,B,C and R; Bayesian Lasso; VanRaden (2008) 
nonlinear A and B; etc.), in which marker effects are explic-
itly fit, sometimes give more accurate estimates than 
GBLUP like methods, in particular in the presence of major 
genes. There are ways to accommodate them in Single Step. 
The first one is to use expressions in Legarra and Ducrocq 
(2012). One of them iterates on regular BLUP evaluation 
and Bayesian regressions; the other one is explicit on mark-
er effects. Both are cumbersome to program but not of very 
large size. For instance, the Chen et al. (2011) data set 
would be analyzed fitting a Gibbs sampler for an animal 
model with 290,000 unknowns, and another Gibbs sampler 
for 50,000 markers in 4,000 animals. These approaches are 
untested for two reasons. First, this is not felt as an urgent 
need; second, it needs some programming and iteration may 
be very long. A simpler approach uses the fact that marker 
effects can be backsolved from EBVs: 𝒂|𝒖! =
𝑫𝒁!! 𝑮!!𝒖𝟐  (Wang et al., 2012) to give more weight to 
markers with larger effect. This is also useful for GWAS, 
and about the only alternative for complex traits where 
pseudo-data are hard to construct (Dikmen et al., 2013).  

 
Computational aspects. Straightforward applica-

tion of Single Step GBLUP is most adequate for popula-
tions with up to 100,000 genotyped individuals. Beyond 
this number, matrices 𝑮 and 𝑨!! become very large (and 
difficult to store and handle). The computation of matrices 
𝑮 and 𝑨!! and their inverses is done by efficient algorithms 
and, preferably, using parallel computations (Aguilar et al., 
2011). With an average workstation, timing is about 1h for 
100k animals, rising cubically. Higher limits can be ob-
tained either by indirect predictions (predictions of SNP 
effects from GBLUP and subsequent use of these effects for 
prediction of young animals) or by alternate computing 
algorithms (Misztal et al., 2009; Legarra and Ducrocq, 
2012). Misztal et al. (2014) proposed a special 𝑮!! based 
on genomic recursions and a decomposition into proven and 
young (or low accuracy) animals. Costs are linear for young 
animals and preliminary tests indicate accuracy similar to 
regular 𝑮!!. 

 
Convergence problems have been reported (Van-

Raden, unpublished; Harris and Johnson, 2013; Aguilar et 
al., 2013) which seem related to inclusion of cows or non 
tested bulls (with little information) in 𝑮. This seems a 
problem only for very large dairy cattle data sets.  

 
Unknown parent groups. This is delicate in ge-

nomic evaluations. Pseudo-data is supposed to be already 
corrected for unknown parent groups but in our experience, 
pseudo-data can be biased (unpublished). Introduction of 
unknown parent groups in Single Step is most efficiently 
done using the untransformed Thompson-Westell equations 
= 𝑿𝒃 + 𝑸𝒈 + 𝒖 + 𝒆  with explicit genetic groups before 
the QP transformation (Misztal et al., 2013). This can dra-
matically improve the accuracy of evaluations. Use of 𝑨!! 
with unknown parent groups, albeit approximate, is usually 
a good compromise if groups are well defined  (Tsuruta et 
al., 2013).  

Process  
 
In this section we will describe the streamlined 

process of genomic evaluation using Single Step, as imple-
mented in the suite of programs Blupf90 
(http://nce.ads.uga.edu) (Misztal et al., 2002). Pedigree and 
phenotypes are typically obtained from some kind of data 
base, and converted into text files, possibly with alphanu-
meric identifiers. Genotypes are typically stored in another 
database and output as text files with identifier and geno-
type coded as 0/1/2. If raw files from Illumina are used, 
Illumina2preGS can be used to generate the needed 
files. 

 
Renumbering. Because most softwares do not ac-

cept alphanumeric fields, programs such as renumf90 can 
recode and verify the three files (pedigree, data and mark-
ers). This includes creating crosslinks across genotypes and 
identifiers used in pedigree and data file. 

 
Quality control. A number of quality control 

checks need to be done. The most common ones are call 
rate, Hardy-Weinberg equilibrium (within population), 
parent-offspring discordances (i.e., a sire cannot be 𝐴𝐴 and 
its son 𝑎𝑎), and sample duplicates (same genotype, differ-
ent identifiers, or same identifier, two genotypes). Most 
errors are due to mislabeling but they are unfortunately hard 
to track down. In addition, discordances between matrices 
𝑮 and 𝑨!! are checked, although this check can (should) be 
disabled if the pedigree is of low quality. Also, matrices 𝑮 
and 𝑨!! can be different if the depth of the pedigree is 
much longer than the genotypes (case of swine and chick-
en) or if the pedigree has many missing parentships (case of 
ruminants). Typically, 𝐆 − 𝐀!!has a SD of 0.04 for com-
plete pedigrees. Correlation is ~0.8 for off-diagonal ele-
ments but can be as low as 0.3 for inbreeding coefficients 
(the reason is that realized inbreeding depends on many 
more events than across-individuals relationships). In this 
case, it is better to cut pedigrees, not checking, or both. 
These checks can be done by program preGSf90 and, in 
part, by others such as Mendelsoft or Plink. 

 
Computation of 𝑮 and 𝑨𝟐𝟐. This is typically done 

by an external program, that can be preGSf90, and matri-
ces are verified.  After computation, these two matrices are 
stored as binary files and read. This computation can be 
also be done from other software (blupf90, remlf90, 
etc). 

 
Solving, and backsolving marker effects. After-

wards, the solvers (blupf90, remlf90, etc) set up the 
mixed model equations with regular 𝑨!! , include 
𝑮!! − 𝑨!!!!  to create 𝑯!! , and solve. If needed, post-
GSf90 can be used to obtain marker effect estimates and 
(potentially) iterate Bayesian regressions as described 
above. With marker effects computed, predf90 can pre-
dict breeding values based on genotypes only. 

 
 
 



Practical experiences 
 
Whom to genotype. Creating a large reference 

population per se is pointless. Most of the information 
comes from close relationships, and therefore what is need-
ed is to genotype a good representation of the recent genetic 
background of the entire population. This can be achieved 
by genotyping, e.g., the last ten years males. Phenotyping 
each generation is needed, because of the decline of accura-
cy, even with Bayesian regression methods (Habier et al., 
2010; Wolc et al., 2011b). Research in dairy cattle has 
shown little extra accuracy by including females’ genotypes 
and phenotypes. So a way to go in ruminants seems to con-
tinuously genotype key individuals: males. However, un-
published work by Lourenco, Fragomeni et al. shows that in 
real poultry data, males’ genotypes benefit males, females’ 
genotypes benefit females, but joint genotypes benefit both. 

 
Species were the Single Step has been extensively 

tested include dairy cattle, dairy sheep, swine and poultry.  
 
Dairy cattle. Single Step GBLUP can be less ac-

curate than multiple step methods for fat and protein con-
tents, where a major gene exists. However “Single Step 
Bayesian Regressions” have not been seriously attempted 
so far in large dairy cattle data sets. Otherwise, for most 
traits it is as accurate as other methods and often slightly 
less biased. The reason why it is not more accurate is be-
cause all bulls are genotyped, and also because pseudo-data 
for each bull is extremely accurate. 

 
Dairy sheep. Single Step is more accurate (~0.05-

0.20 increase in accuracy) and less biased than GBLUP. 
Genetic evaluation is quite straightforward and includes up 
to a few million animals and ~4,000 genotyped rams in 
Lacaune. Single Step provides higher accuracies than regu-
lar BLUP even for small breeds such as Basco-Bearnaise, 
with 500 genotyped males, provided that all recent cohorts 
of males are completely genotyped. Inclusion of unknown 
parent groups is important and done via the untransformed 
Thompson-Westell model, which results in correct genetic 
trends.  

 
Swine. The most extensive testing of Single Step 

in (pure line) pigs was done by Christensen et al. (2012). 
They showed a higher accuracy (~ extra 0.10) of Single 
Step methods than pure GBLUP methods. In particular, 
Single Step allowed much higher accuracy for the scarcely 
recorded Food Conversion Rate, which benefitted from 
genotypes and from the joint prediction with the massively 
recorded daily gain. This analysis is easily doable with 
Single Step, but difficult with any other prediction method. 

 
Chicken. Extensive analysis have been done, ei-

ther with Single Step (Chen et al., 2011a,b; Simeone et al., 
2011) or its simplified version the Reduced Animal Model 
(Wolc, 2011a,b). The emerging trend is that both alterna-
tives are more efficient than regular genomic predictions 
which do not consider ungenotyped relatives (Chen, 
2011a). In the extreme, Bayesian Regression with geno-
typed animals alone can do a worse work than pedigree 

BLUP (Chen et al., 2011a). Reduced Animal Model 
GBLUP is as accurate as Reduced Animal Model Bayesian 
regressions, which simplifies computations and opens the 
door for multiple trait analysis, which are more accurate 
than single trait ones (Chen et al., 2011a). Joint analysis of 
two lines (but without any cross) using crude models did 
not increase accuracy versus separate analysis, and across-
line rankings where dependent of assumptions of the model 
(Simeone et al., 2011).  

 
Conclusion 

 
Poultry breeders do not need to change (much) 

traditional practices (Fulton, 2012) to implement genomic 
selection. Current abundant information on pedigree and 
multiple trait phenotypes can be conveniently integrated in 
the Single Step. Genotyping of candidates to selection 
(young males) and key individuals (males) will become a 
routine process, with females being genotyped only if eco-
nomically profitable. Attention to detail and good handling 
and quality control of genotyping, imputation, and match-
ing pedigree, records and phenotypes will be of utmost 
importance. This will require well trained people. As for 
academia, theoretical developments in genomic evaluation 
including multiple lines and their crosses are of great im-
portance, as well as testing with real data sets.  

 
Table 1. Some examples of accuracy of Single Step 
GBLUP / Reduced Animal Model (RAM) versus pedi-
gree or “pure” genomic evaluations*  

Paper / Trait§ Method 
Pedigree 

BLUP 

“Pure” 
genomic 

evaluation 
Chen et al., 

2011a 
Single Step 

GBLUP   
LS, Line 2 0.73 0.43 0.11 

BM; Line 2 0.51 0.33 0.47 
Wolc et al., 2011a RAM   

ePD ~0.33 ~0.18  
ICO ~0.65 ~0.45  

*excluding phenotypes from non-genotyped individuals 
§LS: leg score; BM: ultrasound measure of breast meat; ePD: egg produc-
tion; ICO: egg color 
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