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ABSTRACT: The objective of this study was to evaluate 
the advantage of the YAMS package over the FSPAK 
package in average-information (AI) REML for single-step 
GBLUP models. Data sets from broiler and Holsteins were 
used in this study. (Co)variance components were estimated 
with the AIREMLF90 program which could switch YAMS 
and FSPAK for sparse operations. The YAMS package 
used the BLAS and LAPACK libraries using all the 16 
cores on CPU. For a single-trait model applied to the data 
contained over 15,000 genotyped animals, FSPAK took 
over 4 hours to finish the first 5 rounds while YAMS took 
20 minutes. For a 4-trait model applied to the same data set, 
FSPAK failed in the sparse factorization while YAMS took 
5 hours to finish the first 5 rounds. The use of YAMS can 
dramatically increase speed and stability of AIREMLF90 
for single-step GBLUP models. 
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INTRODUCTION 
Average-information (AI) REML (Gilmour, 

Thompson, and Cullis 1995) is the most popular method to 
estimate (co)variance components in animal breeding 
(Misztal 2008). The most time-consuming operation in AI 
REML is a calculation of traces in the first derivative of a 
likelihood function. Misztal and Pérez-Enciso (1993) 
demonstrated that the traces could be efficiently calculated 
using a sparse factorization (George and Liu 1981) 
followed by a sparse inversion (Erisman and Tinney 1975) 
of the left hand side of mixed model equations (LHS). A 
sparse inverse contains selected elements of an inverse 
matrix and can be computed with lower cost compared to a 
full inverse. Existing packages that compute the factor and 
sparse inverse, e.g. FSPAK (Pérez-Enciso, Misztal, and 
Elzo 1994), were designed for very sparse LHS and were 
slow to factorize and invert LHS when complex models 
were applied. 

In genomic era, a regular animal model was 
extended to a single-step GBLUP model (ssGBLUP; 
Aguilar, Misztal, and Johnson et al. 2010). In this model, 
the elements of the additive relationship matrix for 
genotyped animals are replaced with the corresponding 
elements of the genomic relationship matrix (GRM) created 
with genomic markers. The ssGBLUP has been studied 
extensively for its predictability of genetic merits (Misztal, 
Aggrey, and Muir 2013). However, a few studies estimated 
genetic parameters using AI REML in ssGBLUP because of 
high computing cost of the sparse operations for LHS 
containing a large dense-matrix, i.e. the inverse of a GRM. 
The FSPAK would take long time to finish the 

computations or even crash especially when 5,000 or more 
genotyped animals were considered. 

Masuda, Baba, and Suzuki (2014) developed a 
sparse package, YAMS. This software implements the 
supernodal methods (Ng and Peyton (1993); Campbell 
1995), which exploit the dense structure in a matrix and can 
efficiently perform the sparse factorization and inversion 
for LHS containing dense blocks. All dense operations 
(multiplications and additions between matrices) are 
performed with the numerical libraries, BLAS and 
LAPACK (Anderson, Bai, and Bischof et al.  1999). 

The objective of this study was to present the 
advantage of YAMS over the FSPAK package in AI REML 
for the ssGBLUP models. Computing options to achieve 
better performance on YAMS were also discussed. 
 

MATERIALS AND METHODS 
Data. Data from field records (Table 1) were used 

in this study. Models 1 through 4 were from commercial 
flocks in broiler.  Additive genetic effects, residual effects, 
and other random effects (only applied to the first trait) 
were considered. Model 5 was a single-trait animal model 
applied to the final score in US Holsteins (Tsuruta, Misztal, 
and Klei et al. 2002). Prior to the estimation of parameters, 
each GRM was calculated with the preGSf90 program 
(Aguilar, Misztal, and Legarra et al. 2011) and stored in a 
file.  

Software. (Co)variance components were 
estimated with the AIREMLF90 program (Misztal, Tsuruta, 
and Strabel et al. 2002), which implements the algorithm by 
Jensen, Mäntysaari, and Madsen et al. (1997). The program 
was modified to switch FSPAK and YAMS using an option 
in a parameter file. The default algorithm of ordering was 
MMD (Liu 1985) in FSPAK, and AMD (Amestoy, Davis, 
and Duff 1996) in YAMS. Detailed algorithms for the 
sparse operations employed in FSPAK and YAMS were 
described by Pérez-Enciso, Misztal, and Elzo (1994) and 
Masuda, Baba, and Suzuki (2014), respectively.  

Benchmarks. All programs were compiled with 
the Intel Fortran Compiler (Intel Corporation, Santa Clara, 
CA). The YAMS package used the multithreaded versions 
of BLAS and LAPACK in the Math Kernel Library (MKL; 
Intel Corporation, Santa Clara, CA). The Analyses were 
performed on a computer with Intel Xeon E5-2689 CPU 
(2.9GHz), which had 16 cores. All the 16 cores were 
simultaneously used in BLAS and LAPACK. Computing 
time for the first and second rounds in AI REML was 
measured. The computing time was split into several parts: 
preparation (setting up equations), finding the ordering, 
symbolic factorization, numerical factorization, sparse 
inversion, and the remaining operations. 



Additional experiments were conducted to 
investigate efficiency of the number of active cores to be 
used in sparse factorization and inversion with YAMS. 
Usefulness of another algorithm for ordering, METIS 
(Karypis and Kumar 1998), was also investigated.  

 
RESULTS AND DISCUSSION 

Comparisons between FSPAK and YAMS. 
Table 2 shows the computing time to finish the first and 
second round in AI REML using FSPAK and YAMS. 
FSPAK crashed during the factorization except Model 1. 
For Model 1, YAMS finished the computing about 10 and 
14 times faster than FSPAK in the first and second round, 
respectively. To finish the first 5 rounds, FSPAK took over 
4 hours while YAMS took 20 minutes. For the most 
complex model (Model 4), YAMS took 5 hours to finish 
the first 5 rounds. This computing time is reasonable to 
conduct a number of analyses with AI REML. 

Table 3 shows the detailed computing time for 
various operations in the first round with FSPAK and 
YAMS. In the numerical factorization and inversion for 
Model 1, YAMS was 20 and 29 times faster than FSPAK, 
respectively. Advantage of YAMS in the preparation step 

was from the AMD-ordering and symbolic factorization 
(Table 4). As the number of traits increased, more 
computing time tended to be spent for non-sparse 
operations. 

Computing options. Table 4 presents the 
computing time for operations in the first round for Model 1 
with different number of cores and the METIS-ordering 
algorithm. The AMD-ordering was more advantageous over 
the METIS-ordering. After ordering with AMD, all 
elements of the inverse of GRM in LHS were reordered and 
put together into a dense block in the bottom-right of the 
factor (Figure 1). The YAMS package can efficiently 
process such a large dense-block using BLAS and 
LAPACK. The METIS algorithm tended to spread nonzero 
elements around the factor and resulted in poor 
performance with YAMS. Even when only 1 core was used, 
YAMS was much faster than FSPAK. The computing time 
reduced as the number of active cores increased.  

The performance of the numerical factorization 
and sparse inversion with YAMS depends largely on the 
optimization level of BLAS. Optimized BLAS libraries are 
available as proprietary software such as the Intel Math 
Kernel Library and the AMD Core Math Library (ACML; 
AMD, Sunnyvale, CA), or free software such as 

Table 1. Description of models and the number of nonzero 
elements in a factor of LHS. 

Model Traits 
Number1 

FIXED PED GENO NZE 
1 1 470 213,297 15,723 1.2×108 
2 2 940 213,297 15,723 5.1×108 
3 3 1,410 213,297 15,723 1.1×109 
4 4 1,880 213,297 15,723 2.0×109 
5 1 1,837 100,775 34,506 6.0×108 

1FIXED = total levels of fixed effects, PED = animals in a pedigree file, 
GENO = genotyped animals, NZE = nonzero elements in a factor. 

Table 2. Computing time (sec.) in first and second rounds 
of AI REML with FSPAK and YAMS. 

Model 
FSPAK  YAMS 
1st 2nd 1st 2nd 

1 3,857 2,808  397 199 
2 NA1  1,103 595 
3 NA  2,480 1,746 
4 NA  5,115 3,381 
5 NA  2,156 1,360 

1FSPAK crashed during the sparse factorization. 
 

Table 3. Computing time (sec.) of operations in first round 
of AI REML with FSPAK and YAMS. 

  Operations1 
Package Model PREP FAC INV MISC 
FSPAK 1 1,006 717 2,077 51 
YAMS 1 235 36 72 53 

 2 668 86 150 199 
 3 1,315 251 428 485 
 4 2,466 556 975 1,117 
 5 922 363 593 278 

1PREP = creations of LHS and relationship matrices on memory, finding 
ordering, and symbolic factorization, NFAC = numerical factorization, 
SPINV = sparse inversion, MISC = other operations related to calculations 
for an AI matrix and gradients. 

Table 4. Computing time (sec.) of operations in first round 
of AI REML for Model 1 with different computing options. 

   Operations1 
Package Cores Ordering O+S FAC INV 
FSPAK 1 MMD 839 717 2,077 
YAMS 1 METIS 81 1,075 3,262 

 1 AMD 67 85 181 
 2 AMD 67 60 127 
 4 AMD 68 46 92 
 8 AMD 67 40 79 
 16 AMD 68 36 72 

1O+S = finding ordering and symbolic factorization, FAC = numerical 
factorization, INV = sparse inversion. 
 

 
Figure 1: The distribution of nonzero elements in LHS 
ordered with AMD for the model 1 (a single-trait model) 
 



OpenBLAS (www.openblas.net), GotoBLAS 
(www.tacc.utexas.edu/tacc-software/gotoblas2), and 
ATLAS (http://math-atlas.sourceforge.net).  

Besides AIREMLF90, YAMS was also 
incorporated into the REMLF90 program with the EM 
REML and the BLUPF90 program to solve mixed model 
equations (Misztal, Tsuruta, and Strabel et al. 2002). These 
programs would accelerate estimation of (co)variance 
components as well as prediction of GEBV and estimation 
of prediction error variances in ssGBLUP. 
 

CONCLUSION 
The YAMS package  dramatically improves speed 

and stability in (co)variance component estimation with AI 
REML for ssGBLUP models. The combination with 
AIREMLF90 was capable of estimating genetic parameters 
in a 4-trait model with a GRM from over 15,000 genotyped 
animals. Assuming cubic cost with the number of 
genotypes, analyses with 60,000 genotypes are possible 
within one day computing if adequate memory is available. 
The YAMS package is also useful for other operations 
requiring a factor or sparse inverse of LHS, such as 
calculation of accuracies for GEBV.  
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