

Water Productivity, Irrigation Management and Systematization for Rice Farming Systems in Central Region of Uruguay

Gonzalo Carracelas^{1*}, Claudia Marchesi ¹, Andrés Lavecchia¹

1 Tacuarembó Experimental Station, National Institute Agriculture Research (INIA), Uruguay 2 * Corresponding author: gcarracelas@inia.org.uy

Introduction

A high proportion of rice farming irrigation in the Central Region of Uruguay is done with water stored in dams (rainfall).

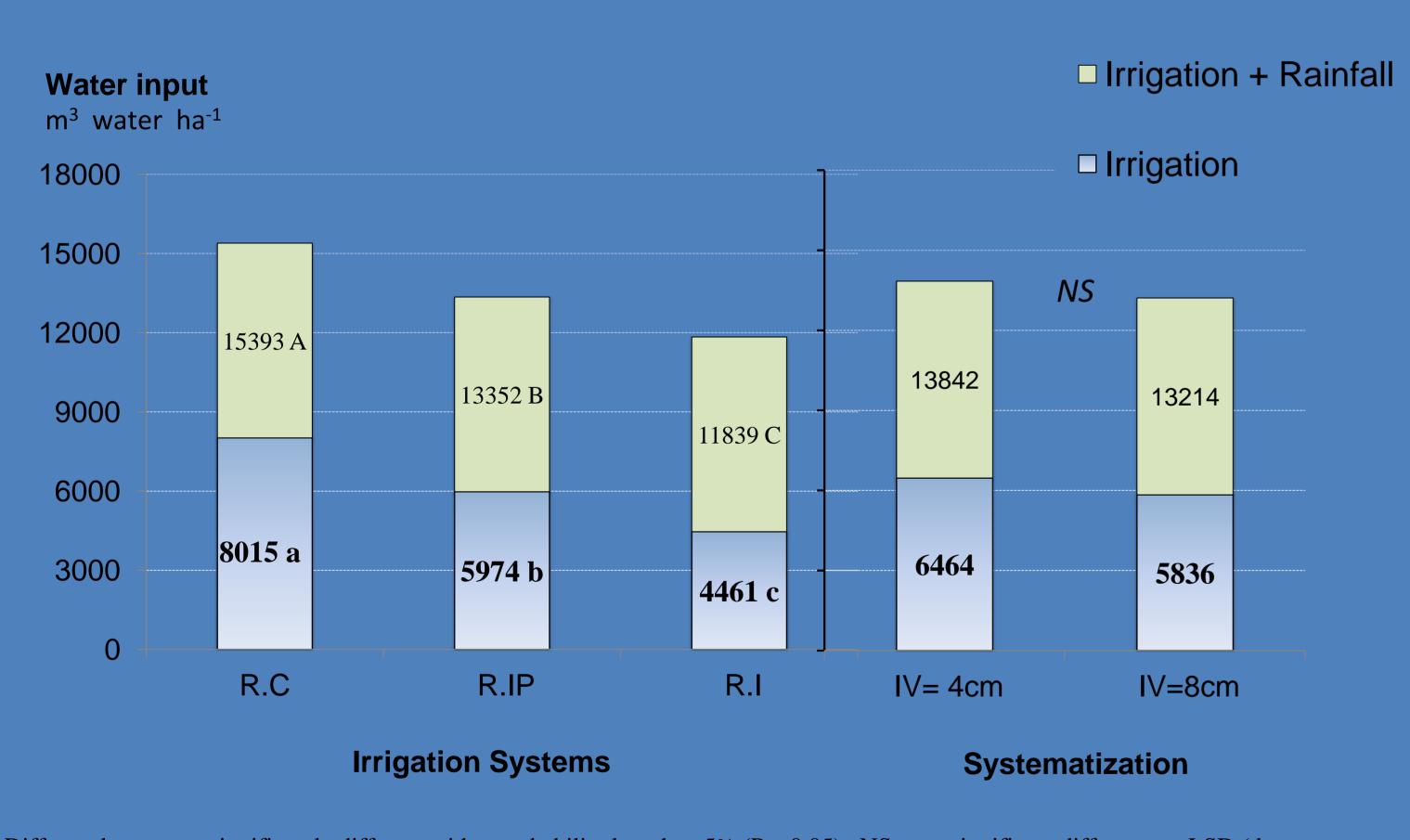
Maximizing water productivity would: reduce the costs of pumping irrigation, increase rice area planted annually allow to irrigate other crops in a rotation

Objective

The aim of the experiment is to determine irrigation management practices and systematization field layout techniques that allows to obtain:

More or Equal Rice yield per Hectare with less Water

Methodology


A split plot experimental design trial was conducted in Tacuarembó Experimental Station (32.18S, 55.17W). Treatments included two types of systematization with different vertical interval between levees (big plots)l: I. Conventional (IV-8cm) and II. Alternative (IV-4cm) and three irrigation management practices (small plots): 1.Continuous (RC), 2.Intermittent until panicle initiation (RIP), and 3.Intermittent during all crop cycle (RI). In RC a water layer of 10cm is maintained after flooding throughout all the crop cycle. In RIP and RI the water layer alternates between 10 and 0cm and is re-established when the soil is still saturated. The results of the joint analysis of the previous three seasons (2012-2013-2014) were evaluated by analysis of variance and mean separation test of Fisher 5% using statistical package InfoStat (www.infostat.com.ar).

Results

Intermittent irrigation systems led to significant water inputs savings in relation to continuous irrigation RC, 2041 and 3554 m³ water ha-¹ less for RIP and RI respectively (Figure 1) (P<0.05). Precipitations during the crop cycle were high, average=738 mm year-¹. There were no differences in rice grain yield between irrigation treatments (P<0.05) (Table 1).

Figure 1. Irrigation Water Input and Total Water Input (Irrigation plus Rainfall) for different irrigation systems and systematization, Tacuarembó, Uruguay (average 3 seasons 2011-14).

Different letters are significantly different with a probability less than 5% (P < 0.05). NS: non-significant differences . LSD (least-square difference) Irrigation Systems = 460

Table 1. Rice Yield, Grain Quality and Water Productivity compared with three irrigation systems and two types of systematization, Tacuarembó, Uruguay 3 seasons 2011-14).

Site= Central Region, Tacuarembó.	Rice Yield (kg ha ⁻¹)	Industrial Quality		Water Productivity (WP) Kg grain / m ³	
		White Grain %	Whole Grain %	Irrigation	Irrigation + Rainfall
Irrigation Systems					
1.Continuous (RC)	7850	69.22	62.73 a	0.99 c	0.52 c
2. Intermittent until panicle initiation (RIP)	7446	69.17	62.17 ab	1.31 b	0.57 b
3. Intermittent during all crop cycle (RI)	7843	69.08	61.94 b	2.00 a	0.68 a
MDS (P<0.05)	NS	NS	0.63	0.17	0.04
Systematization - Field Layout					
I. Conventional - IV=8cm	7735	69.2	62.61	1.57	0.60
II. Alternative - IV= 4cm	7691	69.1	61.95	1.30	0.57
MDS (P<0.05)	NS	NS	NS	NS	NS
CV %	12.12	0.71	1.95	22.44	12.16

Different letters in the same column are significantly different with a probability less than 5% (P<0.05) LSD: least square deviation. NS: non significant differences. CV: coefficient of variation

Conclusions

Intermittent irrigation in low-infiltration rate soils (planosols), allowed for significant savings in water input of 35% on average without reducing rice grain yield relative to continuous irrigation, thus determining a significant increase in water productivity (P < 0.05).

In relation to industrial quality, intermittent irrigation (RI) determined a lower percentage of whole grain in relation to continuous irrigation RC (P < 0.05).

There were no significant differences in water input, grain yield, industrial quality and water productivity between the different systematizations-field layouts treatments (P < 0.05).

