TRENDS IN ROOT ARCHITECTURE FOR HISTORICAL

AND CONTEMPORARY WHEAT CULTIVARS OF URUGUAY

Anika Miller-Cooper^{*1} Marina Castro^{*2}, Cecile Richard^{1,} Martin Quincke², Lee Hickey¹

 The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St Lucia, QLD 4072, Australia 2. Instituto Nacional de Investigación Agropecuaria, La Estanzuela, Colonia, CP 70006, Uruguay *anikamill@yahoo.com *mcastro@inia.org.uy

Why target root system architecture?

- Root system architecture plays a key role in nutrient and water uptake efficiency, but also for tolerance to abiotic stress [1]
- Studies suggest narrow angle root growth is desirable for wheat in deep soils with high water holding capacity and low in-season rainfall [1]

- High number of seminal roots can also improve access to water at depth [1]
- Seminal root angle (SRA) in seedlings is associated with root system architecture in adult plants.

Aim

 Investigate whether selection and breeding in changing environments are reflected in wheat root system architecture in a panel of historic an contemporary wheat cultivars grown in Uruguay

• Insights for desirable root systems in Uruguayan environments

Materials and Methods

- A collection of historic and contemporary spring wheat cultivars grown in Uruguay from 1918-2017
- Cultivars originated from Brazil, Uruguay, Argentina, France, CIMMYT and Australia (2 checks)
- The panel was assessed for seminal root angle (SRA) and number (SRN) using the "clear pot" method [2] (Figure 1)

Figure 3. Increasing SRA (wide angle) trend from 1918 to 1980.

Results & Discussion

- SRA BLUEs ranged from $64^{\circ} \pm 11$ (Larrañaga, Uruguay, 1926) to $116^{\circ} \pm 11$ (Klein Tauro, Argentina, 2008). SRN BLUEs ranged from 2 ± 0.5 (INIA Carpintero, Uruguay, 2007) to 4 ± 0.3 (Estanzuela Tarariras, Uruguay, 1974)
- Increasing SRA from 1918 to 1980- Breeding using regional germplasm, in an high rainfall environment (700 mm in the wheat growing cycle), resulted in indirect selection for cultivars with wider SRA (Figure 3)
- From 1980 dramatic increase in SRA diversity- coinciding with introduction of CIMMYT spring germplasm, selected first in high yield potential environments and afterwards in drought environments using raised beds (Figure 4)

- Best linear unbiased estimators (BLUEs) calculated for SRA and SRN using R statistical package
- Data analysis using historical yield, physical and phenological data

Figure 1. a) "Clear pot" method [2] b) imaged roots 5 days after sowing

- Field management practices changed in 2002 to no-till (improving soil structure and water infiltration) ~ high proportion of contemporary cultivars displaying narrow SRA-this trait may be advantageous in these conditions
- Changes to above ground traits that influence water demand, like tillering & flowering time, could lead to different pathways for increased yield

Figure 4. SRA against year of release. CIMMYT cultivars narrowing SRA, local germplasm (Others) increased SRA diversity

- Figure 2. Imaging at INIA Uruguay glasshouse to phenotype SRA using the "clear pot" method [2]
- Greater understanding of trait interactions on a whole plant system level
- Desirable root trait combinations can be harnessed by breeders and incorporated into elite cultivars to improve sustainable wheat production adapted for selected environments

References

- 1. Christopher, J. et al. (2013), Theoretical and Applied Genetics, 126: 1563-1574.
- 2. Richard, C. A., et al. (2015). Plant methods 11: 13-13.

Working together with the Queensland Government

