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Abstract
Rice (Oryza sativa L.)grain quality is a set of complex interrelated traits that include

grain milling, appearance, cooking, and edible properties. As consumer preferences

in Latin America and the Caribbean evolve, determining what traits best capture

regional grain quality preferences is fundamental for breeding and cultivar release.

In this study, a genome-wide association study (GWAS), marker-assisted selection

(MAS), and genomic selection (GS) were evaluated to help guide the development of

new breeding strategies for rice grain quality improvement. For this purpose, 284 rice

lines representing over 20 yr of breeding in Latin America and the Caribbean were

genotyped and phenotyped for 10 different traits including grain milling, appearance,

cooking, and edible quality traits. Genetic correlations among the 10 traits ranged

from −0.83 to 0.85. A GWAS identified 19 significant marker/trait combinations

associated with eight grain quality traits. Four functional markers, three located in the

Waxy and one in the starch synthase IIa genes, were significantly associated with six
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grain-quality traits. These markers individually explained 51–75% of the phenotypic

variance depending on the trait, clearly indicating their potential utility for MAS.

Cross-validation studies to evaluate predictive abilities of four different GS models

for each of the 10 quality traits were conducted and predictive abilities ranged from

0.3 to 0.72. Overall, the machine learning model random forest had the highest pre-

dictive abilities and was especially effective for traits where large effect quantitative

trait loci were identified. This study provides the foundation for deploying effective

molecular breeding strategies for grain quality in Latin American rice breeding pro-

grams.

1 INTRODUCTION

Since 1948, rice (Oryza sativa L.) production spread and
became a significant source of food and income in Latin
America and the Caribbean (LAC) (Sanint, 1992). Rice breed-
ing has made essential contributions in LAC, with more than
400 rice cultivars released from 1975 to 2012. These cul-
tivars contributed to raising rice production in LAC to 27
million t of paddy grain grown in 5.7 million ha across the
region (Martínez et al., 2014). The Latin American Fund
for Irrigated Rice or FLAR is a public–private partnership
that generates and disseminates knowledge, technologies, and
innovations, contributing to rice competitiveness and sustain-
ability in LAC. Since 1995, FLAR’s breeding program has
been developing improved rice germplasm and distributing it
across different rice institutions in 17 countries in LAC. Elite
FLAR’s germplasm with high yield, disease resistance, abi-
otic tolerance, desired grain appearance, cooking, and milling
quality are released each year in nurseries known as Viveros
de Observación FLAR or VIOFLAR. Until this date, 87 rice
cultivars, released in 14 different countries, were derived from
VIOFLAR lines.

Grain quality is a significant breeding target in FLAR’s
breeding program. Consumer preferences such as grain color,
shape, size, uniformity, softness, and looseness are inher-
ent attributes that acquire meaning through the historical,
geographical, and sociocultural context in which rice con-
sumption is rooted (Custodio et al., 2019). As rice markets
become increasingly complex, breeding programs must pri-
oritize quality to develop acceptable cultivars for consumers
(Calignacion et al., 2014; Custodio et al., 2019).

The Grain Quality Lab at FLAR has developed and imple-
mented methodologies to characterize rice grain quality based
on three main components: milling efficiency, shape and
appearance, and cooking and edible qualities. Milling effi-
ciency determines the final whole-grain yield and the milled
rice’s broken kernel rate, which concerns the milling industry,
consumers, and farmers. Head-rice-recovery (HRR), defined
as the percentage of whole milled grain to paddy rice, is

one of the parameters used to evaluate the milling process’s
quality and one of the factors determining rice market value
(Nelson et al., 2011). Genetically, rice milling quality is con-
trolled by the maternal diploid genotype, triploid endosperm
genotype, and cytoplasmatic genomes (Zheng et al., 2007).
Additive, epistatic, environmental, and environment × genet-
ics interactions influence rice milling quality (Nelson et al.,
2011; Tan et al., 2001; Zheng et al., 2007). A previous
study using 355 indica elite lines from the International Rice
Research Institute showed that HRR is negatively correlated
with grain length and positively correlated with grain width
(GW) (Zhou et al., 2015). Short and broad grains have higher
HRR than long and slender grains (Zhou et al., 2015). In
addition, this study also found that high percentage of grains
with chalkiness was significantly (P value <.05) negatively
correlated with HRR suggesting that HRR decreases rapidly
with increasing percentage of grains with chalkiness and grain
length suggesting that is possible to select for high HRR indi-
rectly using these two traits (Zhou et al., 2015).

Grain shape and size defined by the grain-length and -
width millimeters are prime breeding targets as they affect
yield and quality (Wang et al., 2012). Slender grains clas-
sified as having a length-to-width ratio of three and above
are preferred by the majority of consumers (Fan et al., 2006;
Jain et al., 2004). Multiple genes have been shown to con-
trol grain size; among them, GS3 and DEP1 were associ-
ated with grain length (Huang et al., 2009; Mao et al., 2010),
and GW2, qSW5, and GS5 regulate grain width (Li et al.,
2011; Shomura et al., 2008). Grain appearance is a crucial
property affecting its market acceptability. Rice cultivars with
translucent white endosperm are preferred in most rice mar-
kets (Lin et al., 2016). Chalkiness, characterized by opaque
portions found in rice endosperm caused by the loose starch
granules, is an undesirable trait that negatively affects appear-
ance and milling quality (Li et al., 2014). When chalkiness
located in the grain’s central area is known as white-core rice
kernel (WCRK) (Zhang et al., 2014). High WCRK results
in more broken polished rice and worse taste (Peng et al.,
2014). White-core rice kernel occurs when environmental
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conditions are unfavorable or poor translocation of assimi-
lates from the source leaves and stems at the early and middle
stages of grain filling (Zhang et al., 2014). This type of chalk-
iness is a complex quantitative trait controlled by many genes
and influenced by environmental factors such as temperature,
humidity, and field fertility (Li et al., 2014). Genetically, the
loci Chalk5 (Li et al., 2014), qPGWC-7 (Zhou et al., 2009),
qPGWC-8 (Gou et al., 2011), qACE-9 (Gao et al., 2016), and
qPCG1 (Zhu et al., 2018) have been associated with grain
chalkiness.

Rice physicochemical properties impact cooking and edi-
ble qualities. Amylose-content (AC) and gelatinization-
temperature are the most widely used determinants for
rice texture and processing properties (Chen et al., 2008).
Amylose-content is one of the significant traits used in the
selection process for eating quality among rice breeding pro-
grams. It influences texture and cooked grains’ potential to
retrograde after cooking (Calingacion et al., 2014) and AC
can be used to classify rice grain quality into waxy (0–2%)
and nonwaxy types, with nonwaxy subclassified into low (12–
20%), intermediate (20–25%), and high (25–33%) AC types
(Lu et al., 2009). The Waxy (Wx) gene, located on chro-
mosome 6, encodes the enzyme granule-bound starch syn-
thase (GBSS) required for the synthesis of amylose in the
endosperm (Chen et al., 2008). Two Waxy gene alleles, Wxa

and Wxb, have traditionally been associated with the content
of GBSS transcript and amylose content in rice endosperm,
with the Wxa allele synthesizing higher contents of GBSS and
thus exhibiting higher amylose-content than the Wxb allele
(Chen et al., 2008). In addition to the significant effect of
the Waxy gene, minor genes and the environment were also
thought to influence rice amylose content (Bao et al., 2004).

Gelatinization-temperature is the temperature that melts the
crystalline portion of the amylopectin structure. This starch
characteristic is associated with the proportion of amylopectin
short A and B1 chains, which is primarily controlled by
the gene starch synthase IIa (SSIIa) (Umemoto et al., 2004;
Umemoto & Aoki, 2005). Rice grains with low, intermedi-
ate, and high gelatinization-temperatures show complete, par-
tial, and no disintegration when treated with alkali solution
and assessed for extending of dispersal (Pang et al., 2016).
The degree of spreading value of individual milled grains in a
weak alkali solution of 1.7% potassium hydroxide (w/v; KOH)
is highly correlated with gelatinization-temperature (Graham,
2002). Rice with low gelatinization-temperature easily dis-
integrates under KOH solution showing high alkali-spread
values. Samples with intermediate and high gelatinization-
temperature showed partial and no disintegration in KOH
showing intermediate and low alkali-spread values, respec-
tively (Graham, 2002). Gelatinization-temperature is posi-
tively correlated with the amount of time required to cook rice
(Waters et al., 2006). Rice cultivars with high gelatinization-
temperature require more water and cooking time than those

Core Ideas
∙ Latin America rice germplasm exhibit complex

genetic correlations among grain quality traits rel-
evant for breeding.

∙ Amylose-content, gelatinization temperature, and
setback are ideal targets for marker-assisted selec-
tion in Latin America indica germplasm.

∙ Random forest models displayed higher prediction
abilities for oligogenic grain quality traits.

with low or intermediate gelatinization-temperatures. A low-
to-intermediate gelatinization-temperature is desired for high-
quality rice cultivars (Pang et al., 2016).

The variables AC and gelatinization-temperature alone do
not explain all the variation for eating cooking quality. The
pasting properties of starch measured with a Rapid Visco Ana-
lyzer (RVA) are also important factors affecting eating and
cooking quality (Balet et al., 2019; Pang et al., 2016). Rice
viscosity profiles can establish the gelatinization capacity of
starch and texture, which increases grain rigidity after cook-
ing (Cozzolino et al., 2016; Yan et al., 2005). The grain quality
variables breakdown-viscosity (BDv) and setback-viscosity
(SBv) are rheological properties measured with RVA, asso-
ciated with starch softness and cooking quality. The variable
BDv defines the water absorption capacity during cooking.
Setback-viscosity represents the molecular restructuring of
starch according to the equilibrium between free and bind
water molecules at the end of cooking (Bao et al., 2000; Pang
et al., 2016). Rice texture and looseness were strongly corre-
lated with BDv and SBv (Pang et al., 2016). A genome-wide
association study (GWAS) performed in a diversity panel of
indica rice detected six QTLs in chromosome 6, 7 and 11 asso-
ciated with BDv and SBv (Xu et al., 2016).

The Latin American Fund for Irrigated Rice has defined
specific breeding targets for LAC to develop germplasm
with HRR (≥60%), AC (≥26.5%), gelatinization-temperature
expressed as alkali-spread value (GT–ASV ≥5), BDv mea-
sured in viscosity units (mPa/s) (≤800), SBv measured in vis-
cosity units (mPa/s) (1,600), the grain-length-to-width ratio in
millimeters (GLWR ≥3.2 mm), and WCRK (≤7.08%). Until
this date, breeding for different grain quality traits has relied
on phenotypic selection, with quality traits measured at dif-
ferent breeding-cycle stages. Advancements in the sequenc-
ing and genotyping technologies have led to the develop-
ment of next-generation sequencing platforms that allow the
cost-effective implementation of high-throughput genotyping
for breeding applications (Hickey et al., 2019). Molecular-
based breeding methods such as marker-assisted selection
(MAS), marker-assisted-backcrossing (MABC), and genomic
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selection (GS) offer the opportunity to increase breeding effi-
ciency, selection intensity, and decrease breeding cycles for
grain quality (Crossa et al., 2017).

In this study, a set of VIOFLAR elite lines that represent
the genetic diversity and breeding history from 1995 to 2015
of FLAR’s breeding program (VIOFLAR Informative Panel
[VIP]) was genetically and phenotypically characterized for
grain milling efficiency (HRR at optimal [OHRR]and delayed
[DHRR] harvest), shape and appearance (GW, grain length
[GL], GLWR, and WCRK), and cooking and edible qualities
(AC, gelatinization-temperature, BDv, and SBv) to (a) iden-
tify genetic factors associated with grain quality traits, (b)
determine entry points to implement marker-based assisted
selection strategies for grain quality, and (c) determine genetic
trends for grain quality traits during the past 20 yr in FLAR’s
tropical breeding program.

2 MATERIALS AND METHODS

2.1 Plant materials

A sample of 284 rice lines representing the diversity of dif-
ferent VIOFLAR’s nurseries spanning 17 yr from 1999 to
2015 was genotypically and phenotypically characterized for
grain quality in this study. These lines were selected using
a multivariate clustering analysis on phenotypic information
collected on 3,400 lines from 17 VIOFLAR nurseries from
1999 to 2015. The phenotypic information used to choose
the lines included early-vigor, flowering-time, blast, and Rice
hoja blanca virus resistance, WCRK, AC, HRR, and yield.
Once clusters were defined, a balanced number of lines from
each VIOFLAR/year nursery were randomly sampled from
each group to integrate the VIP set. This approach minimized
bias during the selection of lines and improved the selection
of germplasm representing the breeding history of FLAR.
Eleven checks and donor lines routinely used in FLAR’s
tropical breeding program were included in the experiments.
Detailed information on the germplasm used in this study can
be found in Supplemental File 1 “VIP accessions info.”

2.2 Grain quality phenotypic evaluation

The set of 284 VIP lines and 11 checks were evaluated at two
experimental stations located in the headquarters of the Inter-
national Center for Tropical Agriculture (CIAT) in Colombia:
Palmira and the Santa Rosa Experimental Station at Villav-
icencio. Detailed information on the Experimental Stations
can be found in the Supplemental File 1-“Experimental Sta-
tions info.” Rice trials at Palmira were grown during two
seasons, in the first and second halves of 2016, under full-
irrigated conditions with rows established through transplan-

tation using five plants or hills per linear meter. Historically,
Palmira has been used as the optimal site to evaluate rice lines’
yield potential, milling, and cooking quality. Trials conducted
in Santa Rosa were planted in the first halves of 2016 and 2017
under upland conditions with rows established using direct
seeding. Santa Rosa is a strategic hot-spot or ideal site to eval-
uate disease resistance and abiotic stresses for rice production
and WCRK due to its high humidity and temperature. Trials
in Palmira were used to measure the quality traits at OHRR
and DHRR dates, AC, GT–ASV, BDv, SBv, GL, GW, and
GLWR. Trials conducted in Santa Rosa were used to mea-
sured WCRK.

Rice lines in all trials were evaluated using an Alpha Lat-
tice experimental design (Paterson et al., 1978) with three
replications. In Palmira, plots had three rows spaced 0.3 m
from each other with 10 hills on each row spaced 0.2 m, for
a total plot area of 2 m2. Grains from each plot were har-
vested between 20 and 24% moisture content from eight hills
located in the mid-row to avoid border effect. Harvested paddy
grains were dehulled and polished using a small Satake rice
mill (https://satake-group.com/index.html). Milled-grain har-
vested at Palmira was used to quantified OHHR, DHRR, AC,
GT–ASV, BDv, SBv, GL, GW, and GLWR. Milled rice har-
vested at Santa Rosa was used to measured WCRK.

The traits GW, GL, GLWR, and WCRK were determined
using milled grain images and the software ImageJ (http://rsb.
info.nih.gov/ij/). Photographs were taken on 1.3 g of milled-
whole grains over a contrasting background and homogeneous
light conditions (Santos et al., 2019). Grain images were then
processed using ImageJ that measured individual GL on the
x-axis and GW on the y-axis (Santos et al., 2019). Each mea-
surement was recorded and then averaged to generate the sam-
ple GL and GW values scaled in millimeters. The composed
trait GLWR was calculated by dividing the average GL by
GW (GLWR = GL/GW). The grain appearance quality trait
WCRK is the presence of nontranslucent areas in the center
of the grain endosperm. To calculate WCRK, two parame-
ters were estimated from milled grain images: the total-grain-
area and the grain area that is translucent (or total-translucent-
area). The WCRK was calculated as the percentage of the total
grain area that is not translucent as WCRK = 1 – TTA/TGA.
Grain area was estimated by transforming the image channel
to hue, saturation, and brightness, then binarized to black and
white, and black pixels recorded and scaled in square millime-
ter based on a calibration image.

The apparent AC in grain was evaluated using a near-
infrared spectroscopy (NIR) protocol. Samples were prepared
by drying them to 13% moisture content with an SKS-480
Grain Dryer (Suncue Company, https://suncue.en.taiwan
trade.com/). About 6 g of milled rice from each sample
was grounded using a Cyclotec CT 293 mill (https://www.
fishersci.com/shop/products/ct-293-cyclotec-115v-60hz/
12053116) to obtain powder particle sizes less than

https://satake-group.com/index.html
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
https://suncue.en.taiwantrade.com/
https://suncue.en.taiwantrade.com/
https://www.fishersci.com/shop/products/ct-293-cyclotec-115v-60hz/12053116
https://www.fishersci.com/shop/products/ct-293-cyclotec-115v-60hz/12053116
https://www.fishersci.com/shop/products/ct-293-cyclotec-115v-60hz/12053116
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0.05 mm. The NIR system FOSS NIR 6500 (https://www.
fossanalytics.com/en) was used to measure AC. The equip-
ment was calibrated according to apparent AC method AACC
Method 61-03.01 (http://methods.aaccnet.org/summaries/
61-03-01.aspx). The NIR chemometric model was developed
using 1,793 rice samples ranging from 13 to 33% AC.
The calibration curve was built by regressing AC values
determined using the potassium iodine colorimetric protocol
(Graham, 2002) with the NIR reference values scanned
in rice flour. The final NIR model for AC was described
as Y = 0.9732, X – 0.00015 and showed a coefficient of
correlation (RSQ) = 0.97, standard error of calibration (SEC)
= 0.95, standard error of cross validation (SECV) = 0.96,
coefficient of determination (1 – VR) = 0.94, and standard
deviation (SD) = 6.3. Finally, the standard error prediction
of the calibration model (SEP) was estimated to be 1.57.
This methodology has been routinely used to estimate AC
in FLAR’s Grain Quality Lab (https://flar.org/en/). For each
sample, 5 g of flour was loaded in a circular sample cup and
pressed slightly to obtain a similar packing density. Sample
spectra were collected continuously over a wavelength range
between 400 and 2,500 nm using the software ISIScan.
Spectra data were converted into a percentage of AC in rice
starch for each sample.

The rice starch quality trait GT was measured using the
proxy methodology by alkali spreading or digestion test (Gra-
ham, 2002). The degree of spreading value (GT–ASV) of indi-
vidual milled rice kernels in a weak alkali solution (1.7%
KOH; w/v) is highly correlated with GT. Rice with low GT
disintegrates completely, showing higher spreading values,
whereas rice with an intermediate GT shows partial disinte-
gration and rice with high GT remains largely unaffected in
the alkali solution with low spreading values. A duplicate set
of six whole-milled kernels were selected and treated with
10 ml of 1.7% KOH solution (w/v). The samples were then
arranged to provide enough space between kernels to allow for
spreading. Samples were incubated for 23 h in a 30 ˚C oven.
Treated rice samples are scored visually using a numerical
scale from 1 (high GT) to 7 (low GT). Standard low, interme-
diate, and high GT checks cultivars are included in every test
(Graham, 2002). In this study, GT is from now on expressed
in alkali-spread values or GT–ASV.

The pasting properties BDv and SBv of starch were mea-
sured using a Perten’s RVA 4500-instrument (https://www.
perkinelmer.com/corporate/perten). For each analyzed sam-
ple, 3 g of rice flour was diluted in 25 g of distilled water.
The AACC Method 61-02.01 was used to determined gela-
tinization and paste viscosity properties in rice flour (ICC,
2004; http://methods.aaccnet.org/summaries/61-02-01.aspx).
Each sample was stirred at 960 and 160 rpm for 10 s and
14 min, respectively. The heating cycle began at 50 ˚C for
one minute, followed by 95 ˚C for 7 min, and ended at
50 ˚C for 4 min. Rapid viscosity analyzer curves were reg-

istered, and the values for BDv and SDv of starch measured
in Rapid Viscosity Units (mPa/s) were extracted from curves
using Thermocline for Windows v11.2 software (https://www.
perkinelmer.com/corporate/perten).

The milling quality traits OHHR and DHRR were deter-
mined using the protocol developed by Berrio et al. (2002).
First, rice paddy from each sample was harvested at around
18% moisture content for each genotype and was dried down
to 13%. Two subsamples were taken from dried paddy rice to
measure OHHR and DHRR, respectively. For OHHR, 100 g
of paddy rice was dehulled and polished using a small Satake
rice mill (https://satake-group.com/index.html) and McGill
#2 Mill polisher (Rapsco). Whole grains were separated using
the rice milled and weighted in grams (g). The percentage
in weight of whole grains recovered from the original paddy
sample was used to determine the HRR values.

To determine DHHR, delayed harvesting conditions were
recreated using a modified tub that contains 72 samples,
water, and airflow compartments that simulate field condi-
tions where the grains undergo rewetting after optimal dry-
ing (Berrio et al., 2002). In each simulation batch, 72 sam-
ples of 115 g of paddy rice were placed in individual sam-
ple chambers. The samples were then submerged in 0.4 m3 of
water at a constant temperature of 25 ˚C for 2 h. Water was
drained, and the air was pumped with a fan for 18.75 h at a
temperature of 26 ˚C. After this treatment, the air tempera-
ture was raised using a heating system to 29 ˚C for 2.25 h
to decrease samples moisture-content to 12%. Samples were
then transferred into paper envelopes and stored at room tem-
perature for 10–12 d. After this time, 100 g of each sample was
used to determine head rice recovery values and expressed
as DHHR. The acronyms describing each variable and raw
phenotypic values for each variable can be found in Sup-
plemental File 1 “Phenotyping info” and “Phenotypic raw
data.”

2.3 Genotyping and SNP calling, filtering,
and formatting

The VIP lines and checks used in this study were geno-
typed using the 1K-Rice Custom Amplicon (1k-RiCA assay),
as described in Arbelaez et al. (2019). Genomic DNA was
obtained from leaf tissue of single plants collected at CIAT,
and DNA extraction, genotyping, and single nucleotide poly-
morphism (SNP) calling was done using the genotyping
services of AgriPlex GENOMICS (https://agriplexgenomics.
com/) at Cleveland, OH. Their proprietary platform PlexSeq
was adapted to create the 1k-RiCA.v2. A custom SNP-calling
pipeline developed by AgriPlex GENOMICS was used to
assign variants on the 1k-RiCA amplicons through alignment
to the Nipponbare rice genome MSU7 version (Kawahara
et al., 2013).

https://www.fossanalytics.com/en
https://www.fossanalytics.com/en
http://methods.aaccnet.org/summaries/61-03-01.aspx
http://methods.aaccnet.org/summaries/61-03-01.aspx
https://flar.org/en/
https://www.perkinelmer.com/corporate/perten
https://www.perkinelmer.com/corporate/perten
http://methods.aaccnet.org/summaries/61-02-01.aspx
https://www.perkinelmer.com/corporate/perten
https://www.perkinelmer.com/corporate/perten
https://satake-group.com/index.html
https://agriplexgenomics.com/
https://agriplexgenomics.com/
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Single nucleotide polymorphisms with minor allele fre-
quency ≤0.01; heterozygous calls ≥10%; and call rate ≤75%
were removed using custom scripts written in R version
3.5.0 (R Core Development Team, 2018) and deposited
in Github (https://github.com/jdavelez/1k-RiCA-geno-filters/
blob/master/jdavelez_1k-RiCA.R). For each SNP, heterozy-
gosity was determined as the proportion of heterozygous calls
among all successfully called genotypes. The SNP call rate
was defined as the proportion of successfully called geno-
types among all samples used in the study. Final SNP data
were merged and formatted in a single data frame with mark-
ers in rows and samples in columns. The SNP identification,
chromosome, and physical position information are given in
the data frame’s first three columns. The genotypic data frame
generated in this study is available in Supplemental File 1
“Genotypic raw data.”

To prepare the marker data for GWAS, GS, and population-
structure analyses, the genotypic data set coded as dinu-
cleotide genotypes was formatted to numerical genotypes
reflecting allele dosage either as 0, 1, and 2, or −1, 0, and
1 using the R function ‘geno_to_allelecnt’ deposited in the
GitHub site developed by Dr. Eva Chan (https://github.com/
ekfchan/evachan.org-Rscripts).

2.4 Population structure

To assess the VIP set population structure, the numerical
genotypes coded as −1, 0, and 1 from all samples were used
to estimate an additive relationship matrix (K) (Endelman
et al., 2011) using the ‘A.mat’ function from the R pack-
age ‘rrBLUP’ (Endelman et al., 2011). A principal compo-
nent analysis (PCA) (Pearson, 1901) was performed on the K
matrix using the R function ‘prcomp’ (Mardia et al., 1979;
R Core Team, 2018). Principal components were visualized
using the R package ‘ggplot2’ (Wickham, 2009).

An analysis to estimate the degree of variation between
the VIOFLAR nurseries was assessed using pairwise FST val-
ues calculated between VIOFLAR groups using the function
‘calc_wcFst_spop_pairs.R’ developed by Chan (2014) (http:
//evachan.org) that estimate FST (theta) values for each pair
of VIOFLAR nurseries, using the method described by Weir
and Cockerham (1984). A Neighbor-Joining analysis using
Saitou and Nei (1987) tree estimation was used to visualize
the results.

2.5 Phenotypic data analysis

2.5.1 Broad sense heritability

Analyses of variance (ANOVAs) were conducted for all-grain
quality traits by using the R package ‘asreml’ (ASReml-R

Version 4 ASReml; Butler et al., 2018) with the following sta-
tistical model: Yi,j,k = μ = gi + βj + sj(i) + rk(i,j) + εi,j,k, where
Yi,j,k is the phenotype observations, μ is the overall mean, gi
is the effect of a genotype considered random with a normal
distributions N(0, σ2

𝐺
) without considering the additive rela-

tionship matrix as the variance–covariance matrix, and i vary-
ing from 1 to 284 for 284 genotypes, βj was the fixed effect of
season, with j ranging from 1 to 2 for two different seasons,
sj(i) was the random effect of the genotype by season interac-
tion effect with a normal distribution N(0, σ2

𝐺
), rk(i,j) was the

random effect of the replication (or block) within a season for
each genotype, with k ranging from 1 to 3 for three different
replications and a normal distribution N(0, σ2

𝑅
), εi,j,k was the

residual considered as random and following a normal distri-
bution N(0, σ2). Broad sense heritability of accession means,
H2, was calculated for each trait using the formula of Hallauer
et al. (2010) as follows:

𝐻2 =
σ2
𝑔

σ2
𝑔
+

σ2
𝑔𝑠

𝑗
+ σ2

𝑒

𝑗𝑘

where j represents the mean number of seasons in which
accessions were tested, and k represents the mean number of
plots for each accession within the season. Genotypes were
assumed independent and identical distributed for estimating
H2. Variance components were calculated from the previously
described linear mixed model using ‘asreml’ using the resid-
ual maximum likelihood estimation or RMEL method.

2.5.2 BLUEs estimation and phenotypic
clustering analysis for grain quality and grain
appearance properties

A clustering analysis on the VIP set based on the grain
quality traits OHHR, AC, GT–ASV, BDv, SDv, GLWR, and
WCRK was done using the best linear unbiased estimate
(BLUE) effects calculated OHHR, AC, GT–ASV, BDv, SDv,
GLWR, and WCRK traits on each VIP line. The BLUE val-
ues were estimated using the same model described to cal-
culated broad-sense heritability; however instead of treating
genotypes as random, they were treated as a fixed effect.
Calculated BLUE vectors for each trait were scaled, cen-
tered, and used to create a matrix for clustering. The opti-
mal number of clusters was determined using the Gap Statis-
tic method described by Tibshirani et al. (2001). The Gap
Statistic was applied to the K-means clustering method per-
formed on the scaled phenotypic matrix using Hartigan and
Wong (1979) K-means clustering algorithm. The R func-
tion ‘clusGap’ from the package ‘factoextra’ (Kassambara,
Mundt, & Kassambara, 2017) was used to compute the gap
statistics with K-means as the clustering function with 1,000
Monte Carlo bootstrap sampling set in the function parameters

https://github.com/jdavelez/1k-RiCA-geno-filters/blob/master/jdavelez_1k-RiCA.R
https://github.com/jdavelez/1k-RiCA-geno-filters/blob/master/jdavelez_1k-RiCA.R
https://github.com/ekfchan/evachan.org-Rscripts
https://github.com/ekfchan/evachan.org-Rscripts
http://evachan.org
http://evachan.org
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(https://afit-r.github.io/kmeans_clustering). The optimal clus-
ter number was used to group the VIP lines. The results from
this analysis and phenotypic PCA were visualized using the
R package ‘ggplot2’ (Wickham, 2009) and ‘ggrad’ (Ricardo
Bion, https://github.com/ricardo-bion/ggradar).

2.5.3 Genetic correlation between grain
quality traits

Genetic correlations between grain quality traits were esti-
mated using a multivariate mixed model analysis in ‘asreml’
(ASReml-R Version 4 ASReml; Butler et al., 2018). Each
multivariate mixed model was defined in the function
‘asreml()’ by specifying a matrix of traits as the fixed effects
formula’s response. Internally ‘asreml’ expands the data
frame by repeating each row by the number of traits such as
the traits are nested within each experimental unit as described
by ASReml-R-Reference-Manual-4 (Butler et al., 2018). The
model 𝐲 = 𝐗β + 𝐙u + 𝑒, where 𝐲 = (𝐲′1, 𝐲′2,… , 𝐲′𝐝)′,
𝐮 = (u′1, u′2,… , u′d)′, and 𝑒 = (𝑒′1, 𝑒′2,… , 𝑒′d)′, and 𝐲 is
the response vector of d traits (grain quality traits described
above), X is a design matrix for fixed effects β that included
the grand mean and the trial-season for each trait, and Z is
a design matrix for random genetic effects u. Following a
multivariate normal distribution (𝑁m), the marginal density
of 𝐲 is (𝐲β,𝐑,𝐆) ∼ Nm(𝐗β,𝐕), and 𝐕 = 𝐙(𝐆⊗𝐊)𝐙T +
(𝐑⊗ 𝐈). The matrices 𝐆 and 𝐑 are 𝑑𝑥𝑑 symmetric unstruc-
tured genomic error covariance matrices respectively, 𝐈 is an
identity matrix, 𝐊 remains the additive genomic relationship
matrix calculated using the numerical genotype matrix for
the VIP lines and the function ‘A.mat’ from the R package
‘rrBLUP’ (Endelman et al., 2011), and e is the residual with
𝑒 ∼ 𝑁(0, σ2e𝐈). The error structure was specified as two-
dimensional, with independent units and unstructured vari-
ance. The results from each analysis were visualized using the
R package ‘ggplot2’ (Wickham, 2009).

2.5.4 Genome-wide association studies for
grain appearance, quality, and milling traits

A univariate linear mixed model GWAS that accounts for spa-
tial variation across and within the season for each trait was fit
using the R Package ‘sommer’ (Covarrubias-Pazaran, 2016).
To account for spatial variation across and within seasons, the
following model was used: 𝐲 = 𝐗𝛃 + 𝐙u +𝐖τ + 𝑒, where
𝐲 is the response vector of a trait, 𝛃 is the vector of fixed
effects with the design matrix𝐗 (relating observations to fixed
effects, in this case, the grand mean and the trial-season for
each trait; u is a vector of random effects with the design
matrix 𝐙 (relating the genotypes, the nested effect of rep-
within-trial-season, and the interaction between genotypes

and season) with u ∼ 𝑁(0, σ2
𝑢
𝐊) and 𝐊 as the genomic rela-

tionship matrix; the variable τ models the additive SNP effect
as a fixed effect; 𝑒 is the residual effect vector assumed to be
normally distributed with 𝑒 ∼ 𝑁(0, σ2

𝑢
𝐈).

Because of VIP lines’ low subpopulation structure, a model
accounting for familial relatedness (𝐊) with genotype as ran-
dom effect structured following a kinship matrix 𝐊. The
inspections of the quantile–quantile (Q–Q) plots of the respec-
tive 𝑃 -values obtained in each model were used to assess
to what extend the models accounted for genetic related-
ness among the VIP lines and therefore guarded against
false discoveries. The observed 𝑃 values (on a −log10
scale) of each SNP were plotted against their chromosomal
position to produce Manhattan plots using the R package
‘qqman’ (Turner et al., 2018). A threshold of −log10 (𝑃 -
value) = 4.23 estimated using the Bonferroni multiple test-
ing correction method with a statistical significance value of
.05 [−𝑙𝑜𝑔10 (

0.05
863 SNPs ) = 4.23] (Bonferroni, 1935), was used

to define the significant association between SNP and trait
phenotypes. After each GWAS, significant SNP associated
with each grain quality traits were subset and the marker
name, chromosome, physical position, additive marker effect,
−log10(𝑃 -value), the proportion of genetic variance explained
by the marker were extracted and summarized as part of the
results.

Marker haplotypes analyses were performed for AC, GT–
ASV, and SBV. Haplotypes defined using markers associated
with each trait were regressed against the adjusted means cal-
culated for each accession. Multiple comparisons among hap-
lotypes were estimated using Tukey’s HSD (honestly signif-
icant difference) (Brillinger & Tukey, 2002) method using
the R function ‘HSD.test’ from the R package ‘agricolae’
(Mendiburu 2015). Significant differences between groups
were determined by different letters in boxplots.

2.5.5 GS for grain milling, appearance, and
cooking quality traits

Four different GS models were used to calculate genomic esti-
mated breeding values to test each model’s predictive abil-
ity effect. The GS models tested included ridge regression
(rrBLUP) (Endelman et al., 2011), Bayesian LASSO (BL)
(Park & Casella, 2008), reproducing kernel Hilbert space
regressions (RKHS) (de los Campos et al., 2009), and ran-
dom forest (RF) (Breiman, 2001). These models were specif-
ically selected to represent a range of different assumptions
on QTL effect distributions resulting in different marker
effect distributions (Heslot et al., 2012). The rrBLUP model
assumes that marker effects are homogeneously distributed
across the loci, whereas BL allows heterogeneity among
markers, with some markers having larger effects than others.
Nonparametric models such as RF, a machine learning-based

https://afit-r.github.io/kmeans_clustering
https://github.com/ricardo-bion/ggradar
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method, and RKHS consider correlations or interactions
between markers, capturing nonadditive genetic effects.

For rrBLUP, the marker-based genomic relationship matrix
𝐊was constructed using numerically coded genotypes and the
‘A.mat’ function in the ‘rrBLUP’ package (Endelman, 2011).
The ridge regression model was tested using the R package
‘rrBLUP’ (Endelman et al., 2011) by implementing the mixed
model 𝐲 = 𝐗β + 𝐙u + 𝑒, where 𝐲 is a vector of phenotype
observations, β is a vector of fixed effects for the seasons and
𝐗 is the design matrix for seasons, 𝐮 is a vector of random
additive marker effects with Var [u] = 𝐊σ2, and 𝑒 is a vector
of residual effects with Var [𝑒] = 𝐈σ2

𝑒
. To use RF, the geno-

type matrix was coded as 0, 1, and 2 to be consistent with
the genotypic data format requirements of the ‘RandomFor-
est’ R package. RF is a collection of classification trees grown
on bootstrap samples of observations using a random sub-
set of predictors to define the best split at each node. This
model was implemented using the R package ‘RandomForest’
(Liaw & Wiener, 2003) using the default settings of the func-
tion except for the number of trees, which was set to 1000,
and the minimum size of the terminal node as 50, as sug-
gested by Heslot et al. (2012). The Bayesian model BL was
implemented using the R package ‘BGLR’ (Pérez et al., 2014)
by fitting the mixed model 𝐲 = 𝐗β + 𝐙u + 𝑒, as defined for
rrBLUP. In this case the prior distribution of 𝐮 is not con-
sidered normally distributed, and 𝐮 is the corresponding vec-
tor of marker effects assigned IID double-exponential priors
Pr(𝐮𝑖λ) =

λ
2exp(−λ|𝐮𝑖|), which corresponds to the prior used

in the BL model (Pérez et al., 2014). Additionally, the default
parameters for thinning, 5, and 8,000 iterations with the first
1,000 iterations discarded as burn-in were used as described
by Pérez et al. (2014). The model RKHS (Gianola et al., 2008)
implements the genomic relationship matrix used in rrBLUP
and replaces it with a kernel matrix, which enables non-linear
regression in a higher-dimensional feature space. According
to Pérez et al. (2014) the RKHS model can be represented as
𝑦 = 1μ + 𝑢 + ε, with 𝑝(μ, 𝑢, ε) ∝ 𝑁(𝑢0,𝐊σ2

𝑢
)𝑁(ε|0, 𝐈σ2ε),

where K = {𝐊(𝑥𝑖1, 𝑥𝑖′ )} is an (𝑛 × 𝑛)-reproducing-kernel-
matrix whose entries are functions of marker genotypes of
pair of individuals from the relationship matrix, and ε is a vec-
tor of residuals on length 𝑛.

To compute predictive ability, a fivefold cross-validation
experiment using 4/5 of the 284 VIP lines as the training set to
predict the remaining 1/5 VIP lines of the validation set was
implemented. Each cross-validation was repeated five times
using five independent partitioning of the accessions into the
training set and validation set. The presence of highly related
individuals within each VIOFLAR nursery in the dataset
could artificially inflate predictive abilities if the closest indi-
viduals were randomly assigned to the same fold and used
a training-set. A stratified cross-validation strategy (Zeng &
Martinez, 2000) was used to control for predictive abilities
bias when designing the different folds by sampling individ-

uals randomly within VIOFLAR nurseries defined using the
VIP line information. Each cross-validation experiment’s pre-
diction ability was computed as the mean value of the five
Pearson correlations (Pearson, 1901) between the observa-
tions and the cross-validated genomic estimated breeding val-
ues (Heslot et al., 2012).

2.5.6 Grain quality genetic trends

The phenotypic and genotypic data collected in this study
were used to determine the total and additive genetic trends
observed across 17 yr of breeding history for the grain qual-
ity traits. Total and additive rate of genetic realized gain for
individual traits was measured using the mean phenotypic
and breeding values for the VIP and the VIOFLAR year
(Rutkoski et al., 2019). The estimate of realized gain per year
was quantified as the slope of the regression line of the pheno-
typic or breeding value on year number (Garrick, 2010). The
total genetic trend for each trait was estimated by fitting the
mixed model 𝑦𝑖,𝑗,𝑘,𝑙 = μ + β𝑖 + 𝑔𝑗 + 𝑠𝑘(𝑗) + 𝑟𝑙(𝑗,𝑘) + ε𝑖,𝑗,𝑘,𝑙, in
which 𝑦𝑖,𝑗,𝑘,𝑙 is the phenotype, μ is the overall mean, β𝑖 is the
fixed effect of the year when that VIP line was first tested in
VIOFLAR trials (year of release), with 𝑗 varying from 1999
to 2015 for 17 different VIOFLAR testing years, 𝑔𝑗 is the
effect of a genotype considered random with a normal distri-
butions 𝑁(0, 𝐈σ2

𝐺
) without considering the additive relation-

ship matrix as the variance–covariance matrix, and 𝑗 varying
from 1 to 284 for 284 genotypes, 𝑠𝑘(𝑗) is the random effect of
the genotype × season interaction effect with a normal distri-
bution 𝑁(0, σ2

𝑆
), 𝑟𝑙(𝑗,𝑘) is the random effect of the replication

(or block) within a season for each genotype, and a normal
distribution 𝑁(0, σ2

𝑅
), and ε𝑖,𝑗,𝑘,𝑙 is the residual considered

as random and following a normal distribution 𝑁(0, σ2). To
estimate the additive genetic trend, the same model was fit
considering the additive relationship matrix for the genotype
random effect 𝑔𝑗 with a normal distribution 𝑁(0, 𝐊σ2

𝐺
) in

which 𝐊 is the additive relationship matrix estimated using
‘rrBLUP’ (Endelman, 2011). A Wald test (Wald, 1943) was
used to determine if the release or the VIP year was sig-
nificant. Regressed adjusted mean breeding values for each
year and trait were visualized using the R package ‘ggplot2’
(Wickham, 2009).

3 RESULTS

3.1 VIOFLAR Informative Panel genetic
structure

A PCA using the genotypic data of 284 VIP lines from 17
different VIOFLAR nurseries from 1999 to 2015 showed no
major genetic differentiation among the VIP lines (Figure 1A
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(a)

(b)

F I G U R E 1 VIOFLAR Informative Panel (VIP) genetic structure. (A) Principal component analysis of 284 VIP lines from the 1999–2015
yr-nurseries using the genotypic data generated with the 1k-RiCA single nucleotide polymorphism (SNP) assay on each line. Scatter plot of PC1 vs.
PC2. (B) Weir and Cockerham’s FST Neighbor-Joining analysis between the VIOFLAR’s nurseries from 1999 to 2015 using the genotypic
information of each line generated using the 1k-RiCA SNP assay. Visually determined branches were color coded black, red, and blue, respectively

and Supplemental Figure S1A and S1B). Together, the princi-
pal components (PC) 1, 2, and 3 explained 11.93% of the total
genetic variation with PC1, PC2, and PC3, explaining 4.46,
4.01, and 3.46%, respectively (Figure 1A and Supplemental
Figure S1A and S1B). An assessment to determine finer lev-
els of genetic divergence between VIOFLAR nurseries was
done using a pairwise FST analysis using the genotypic infor-
mation collected in VIP lines grouped by each VIOFLAR
nursery (Figure 1B, Supplemental Table S1). Pairwise FST
values between VIOFLARs ranged from 0.02 to 0.26, with a
mean of 0.081 (Supplemental Table S1). The FST results were
visualized using an unrooted Neighbor-Joining tree graph
(Figure 1B). Three distinct groups with different genetic
divergence levels were observed in the Neighbor-Joining tree.
The first group was made up of the 1999 VIOFLAR nursery
(Figure 1B). The 1999 VIOFLAR showed average FST

values of 0.185 and 0.193 concerning Groups 2 and 3, being
the most divergent groups. The second group contained
VIOFLAR nurseries from the Years 2000, 2001, 2002, 2004,
and 2005 (Figure 1B), and the third group had VIOFLARs
from the Years 2006 to 2015, including the 2003 nursery
(Figure 1B). The average FST value observed between
Groups 2 and 3 was 0.08 (Figure 1B and Supplemental
Table S1). Groups 2 and 3 were more similar to each other
when compared with Group 1.

3.2 Broad sense heritability and genetic
correlations between grain quality traits

Broad sense heritability estimates (H2) for each trait evaluated
across two seasons varied from 0.7 to 0.96 with a mean of
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F I G U R E 2 Genetic correlations between grain quality traits. Genetic correlation heat map between 10 grain quality traits OHRR (optimal head
rice recovery), DHRR (delayed head rice recovery), AC (amylose-content), GT–ASV (gelatinization-temperature expressed as alkali-spread value),
BDv (breakdown-viscosity), SBv (setback-viscosity), GL (grain length), GW (grain width), GLWR (grain length to width ratio), and WCRK (white
core rice kernel) evaluated on 284 VIOFLAR Informative Panel lines across two different seasons

0.87 (Supplemental Table S2). Genetic correlations between
grain quality traits are summarized in Figure 2, Supplemental
Table S2, and Supplemental Figure S2. Genetic correlations
between the 10-grain quality traits ranged from −0.83 to 0.85
(Supplemental Table S2). Based on a Neighbor-Joining tree
estimated using the genetic correlation matrix, five clusters of
traits were identified showing similar relationships between
them with the first group made up of AC, GT–ASV, and
SBv. The second had GL and GLWR, the third had GW and
WCRK, the fourth had DHRR and BDv, and the fifth OHRR
(Supplemental Figure S2).

3.3 Genetic correlation with milling quality
traits OHRR and DHRR

The grain milling quality trait OHRR showed positive genetic
correlations with DHRR (0.55), GW (0.36), GT–ASV (0.31),
BDv 0.2), AC (0.13), and SBv (0.1). The trait OHRR had neg-
ative genetic correlation with GL (−0.59). The trait DHRR
had positive genetic correlations with OHRR (0.55) and BDv
(0.5), and negative genetic correlation with AC (−0.39), GL

(−0.27), WCRK (−0.26), GT–ASV (−0.18), and GW (−0.13)
(Figure 2 and Supplemental Table S2).

3.4 Genetic correlation with cooking
quality traits AC, GT–ASV, BDv, and SBv

The grain quality traitAC showed positive genetic correlations
with SBv (0.85),GT–ASV (0.48), WCRK (0.4), and OHRR
(0.13) and negative genetic correlations with BDv (−0.83)
and DHRR (−0.39). The grain quality trait GT–ASV showed
positive genetic correlations with AC (0.48), SDv (0.38),
OHRR (0.31), and GL (0.13) and negative genetic correla-
tions with BDv (−0.53), WCRK (−0.38), and DHRR (−0.18)
(Figure 2, Supplemental Table S2). The cooking quality trait
SBv had positive genetic correlations with AC (0.85), WCRK
(0.4), GT–ASV (0.38), and OHRR (0.1) and negative genetic
correlations withBDv (−0.7) andDHRR (−0.31). Breakdown
viscosity showed positive genetic correlations with DHRR
(0.5) and OHRR (0.2) and negative genetic correlations with
AC (−0.83), SBv (−0.7), and GT–ASV (−0.53) (Figure 2 and
Supplemental Table S2).
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F I G U R E 3 Trait mean values for each phenotypic cluster group.
Boxplots for (A) OHRR (optimal head rice recovery), (B) AC
(amylose-content), (C) gelatinization-temperature (GT), (D) BDv
(breakdown-viscosity), (E) SBv (setback-viscosity), (F) GLWR (grain
length to width ratio), and (G) WCRK (white core rice kernel) for each
cluster identified using gap statistic. The target values for each trait are
OHRR ≥60% (or ≥0.66), AC ≥25.5% (or ≥0.33), GT–ASV
(gelatinization-temperature expressed as alkali-spread value) ≥5 (or
0.6), BDv ≤800 (or ≤0.41), SBv ≥1,600 (or 0.74), GLWR ≥3.2 mm (or
0.36), and WCRK ≤7.08% (or ±0.2)

3.5 Genetic correlation with appearance
traits GL, GW, GLWR, and WCRK

The grain appearance trait GL showed a negative genetic
correlation with OHHR (−0.59), DHRR (−0.27), and GW
(−0.16). Positive genetic correlations were observed between
GW with WCRK (0.48) and OHRR (0.36). Negative genetic
correlations were observed between GW and DHRR (−0.13).
Negative genetic correlations were observed between OHRR
and GLWR (−0.61) and positive genetic correlations were
observed between GLWR and GT–ASV (0.11). The appear-
ance trait WCRK showed positive genetic correlations with
SBv (0.4), AC (0.4), and GW (0.48), and negative genetic cor-
relations with GT–ASV (−0.38) andDHRR (−0.26) (Figure 2
and Supplemental Table S2).

3.6 VIP cluster analysis based on OHRR,
AC, GT–ASV, BDv, SBv, GLWR, and WCRK
phenotypes

The VIP lines were clustered using seven quality traits:
OHRR, AC GT–ASV, BDv, SBv, GLWR, and WCRK. These
traits represent typical targets for breeding and rice mar-
keting. Using a Gap Statistic test, five different groups or
clusters were identified (Supplemental Figure S3A and Sup-
plemental Table S3). Mean BLUE values for each group
for the traits OHRR, AC, GT–ASV, BDv, SBv, GLWR,
and WCRK are summarized in Figure 3, and Supplemental
Figure S3B. Each cluster’s mean values were compared with
the target quality values defined for each trait by FLAR. The

VIP lines in Cluster 2 contained most of the lines that fall
within FLAR’s quality breeding targets (Figure 3). Clusters 1
and 3 meet most of the desired quality profiles with the excep-
tion of lowWCRK andOHRR values, respectively (Figure 3).
Clusters 4 and 5 on average did not meet most of the grain
quality requirements defined by FLAR (Figure 3).

A PCA analysis using OHRR, AC, GT–ASV, BDv, SBv,
GLWR, and WCRK phenotypes showed that the first PC
explained 36% of the total phenotypic variance. The first
PC separated lines in Group 5 from the rest (Supplemental
Figure S4A). The second PC, explaining 20% of the total phe-
notypic variation, split Groups 1 and 3 (Supplemental Figure
S4B). The third PC, explaining 18% of the total phenotypic
variance, separated Group 4 from the others (Supplemental
Figure S4C).

3.7 Grain quality GWAS

The GWAS on OHRR, DHRR, AC, GT–ASV, BDv, SBv,
GL, GW, GLWR, and WCRK evaluated in the VIP lines
identified 19 marker/trait combinations significantly asso-
ciated with OHRR, DHRR, AC, GT–ASV, BDv, SBv,
GLWR, and WCRK (Table 1, Supplemental Figure S5A–H).
Two peaks on chromosome 5 and 6 tagged by the
markers chr05:21494622 and WX-A-GROUP were asso-
ciated with DHRR and one marker in chromosome 9,
chr09:12326525, was associated with OHRR (Table 1, Sup-
plemental Figure S5A–B). Three markers in chromosome
6 were determined to be significantly associated with AC
(Table 1, Supplemental Figure S5C). These three mark-
ers defined two distinct peaks, one with the markers WX-
A_GROUP and WX-A-RC222 and the other peak tagged by
the marker chr06:4641044. Haplotypes groups for AC were
defined using markers WX-A_GROUP, WX-A-RC222, and
WX-INT. Even though WX-INT was not significantly asso-
ciated with AC in this GWAS, it was included in the analy-
sis because these three markers were described by Dobo et
al. (2010) to determine different waxy allelic forms. When
haplotypes of these three markers were regressed against
AC phenotypic values, the proportion of phenotypic value
explained was 0.6 (Figure 4A, Supplemental Table S5). The
marker SSIIA-3B was significantly associated with GT–ASV
explaining 0.75 of the phenotypic variation (Figure 4B, Sup-
plemental Figure S5D, and Supplemental Table S5). Two sig-
nificant markers defining two distinct peaks for BDv were
determined by the markers on chromosome 6, WX-A-RC222,
and SSIIA-3B, respectively (Table 1, Supplemental Figure
S5E). The trait SBv had two significant peaks, one in chro-
mosome 6 between the markers WX-A_GROUP and WX-
A-RC222, and one in chromosome 2 defined by the marker
chr02:5836334 (Table 1, Supplemental Figure S5F). When
haplotypes of two SBv significant markers in chromosome 6
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T A B L E 1 Grain quality genome-wide association studies

SNP marker Chr Position Marker additive effect −log10(P value) PEV Trait
chr09:12326525 9 12326525 0.35923339 4.40587504 0.03 OHRR

chr05:21494622 5 21494622 0.38106586 5.77064524 0.05 DHRR

WX-A_GROUP 6 1768724 0.35100042 5.43557854 0.06 DHRR

WX-A_GROUP 6 1768724 −0.6184418 18.2071211 0.41 AC

WX-A-RC222 6 1768998 0.41981083 8.77593029 0.27 AC

chr06:4641044 6 4641044 0.35791404 5.02910397 0.17 AC

SSIIA-3B 6 6752888 0.94434899 47.0745304 0.76 GT–ASV

WX-A_GROUP 6 1768724 0.48251521 11.5536241 0.17 BDv

SSIIA-3B 6 6752888 −0.2894151 5.1736761 0.07 BDv

WX-A_GROUP 6 1768724 −0.4985356 11.9736197 0.4 SBv

WX-A-RC222 6 1768998 0.59671931 17.0275116 0.49 SBv

chr07:25339609 7 25339609 0.28560728 4.47817851 0.19 GLWR

SSIIA-3B 6 6752888 −0.2182546 4.32079601 0.06 WCRK

Note. Marker significantly associated, defined using a Bonferroni multiple testing correction P < .05, for eight different grain quality traits evaluated in the VIOFLAR
Informative Panel (VIP) set. AC, amylose-content; BDv, breakdown-viscosity; Chr, chromosome; DHRR, delayed head rice recovery; GLWR, grain length to width ratio;
GT–ASV, gelatinization-temperature expressed as alkali-spread value; OHRR, optimal head rice recovery; PEV, phenotypic explain variation; SBv, setback-viscosity;
SNP, single nucleotide polymorphism; WCRK, white core rice kernel.

were regressed against SBv phenotypic values, the proportion
of phenotypic value observed was 0.51 (Figure 4C, Supple-
mental Table S5). The traits GLWR and WCRK, each had one
peak defined by the markers chr07:25339609 and SSIIA-3B,
respectively (Table 1, Supplemental Figure S5G–H).

3.8 Grain quality GS

Genomic selection cross-validation analyses were performed
using four different models: rrBLUP, RKHS, BL, and RF
in 10 different grain quality traits using the VIP lines.
The results were summarized in Figure 5 and Supplemental
Table S4. The predictive abilities of each trait ranged from
0.4 to 0.45 for OHRR, 0.42 to 0.47 for DHRR, 0.3 to 0.6 for
AC, 0.48 to 0.5 for GT–ASV, 0.37 to 0.5 for BDv, 0.39 to
0.72 for SBv, 0.52 to 0.56 for GL, 0.42 to 0.51 for GW, 0.54
to 0.63 for GLWR, and 0.45 to 0.47 for WCRK (Figure 5 and
Supplemental Table S4). In general, RF had the highest pre-
dictive abilities across all traits (Figure 5 and Supplemental
Table S4) and had significant better (P value <.05) predictive
abilities for AC, BDv, and SBv compared with rrBLUP and
RKHS (Supplemental Table S4). The model RF outperformed
rrBLUP predictive ability by 30, 11, and 32% for AC, BDv,
and SBv, respectively (Figure 5, Supplemental Table S4).

3.9 Total and additive genetic trends for
grain quality traits

Positive significant total genetic trends (P value <.05) were
observed for DHRR, GL, and GLWR with an annual incre-

ment of 1.0, 0.2, and 0.45%, respectively (Figure 6B, G, and I,
Supplemental Table S6). Negative significant total genetic
trends (P value <.05) were observed for OHRR, GW, and
WCRK with an annual percentage decrease of 0.16, 0.21,
and 2.4%, respectively (Figure 6A, H, and J, Supplemental
Table S6).

Positive significant additive genetic trends (P value <.05)
were observed for SBv with an annual increment of 2.15%
(Figure 6F, Supplemental Table S6). Negative significant
additive genetic trends (P value <.05) were observed for
OHRR, BDv, and GW with an annual percentage decrease
of 0.16, 1.0, and 0.16%, respectively (Figure 6A, E, and H,
Supplemental Table S6).

Positive but not significant total and additive genetic
trends (P value <.05) were observed for AC and GT–ASV
(Figure 6C and D, Supplemental Table S6).

4 DISCUSSION

The PCA of genotypic data in this study showed no major sub-
population structure among the VIP lines. These results were
similar to previous studies performed in indica rice breed-
ing programs. Begum et al. (2015) evaluated indica breeding
lines from the International Rice Research Institute’s Irrigated
Rice Program and found that the first three PC explained 10%
of the total genetic variance when 73,147 SNPs were used
to determine the relationship between lines. The population
structure results indicated that VIP lines belonged to a single
population of indica lines, consistent with FLAR’s intrapopu-
lation improvement breeding strategy where the introduction
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F I G U R E 4 Haplotype phenotypic effect for markers significantly associated with AC (amylose-content), GT–ASV (gelatinization-temperature
expressed as alkali-spread value), and BDv (breakdown-viscosity). Best linear unbiased estimator boxplot regressed on genotypic haplotypes defined
by GWAS significant single nucleotide polymorphisms identified for (A) AC, (B) GT–ASV, and (C) SBv (setback-viscosity). Different letters on
each boxplot represent significant differences (P < .05) from a multiple HSD Tukey comparison test

of external germplasm has been constrained. Subtler degree
differences among VIP lines were observed when a Neighbor-
Joining tree constructed using a pairwise FST matrix among
VIOFLAR nurseries was generated. Three groups consist-
ing of VIP lines from 1999, 2000 to 2005, and 2003 and
2006to 2015 were observed. Based on FLAR’s breeding his-
tory described by Berrio-Orozco et al., 2016, the VIP lines
from 1999 were derived from the first crosses FLAR did after
its creation in 1995. The base population consisted of lines
collected from different programs in South America and Asia.
The second group from 2000 to 2005 was derived mostly from
crosses between CIAT lines aiming to improve adaptability
and disease resistance for tropical regions in South Amer-
ica. The third group made up of VIP nurseries from 2006
to 2015 were derived from FLAR–FLAR, and FLAR–CIAT

crosses. Ideotype breeding objectives were considered during
the development and selection of the third group nurseries.
Interestingly, most of the crosses that generated the nurseries
from 2006 to 2015, were derived from the 2003 VIOFLAR
that clustered with this group (Berrio-Orozco et al., 2016).

A PCA using the phenotypic values of OHRR, AC, GT–
ASV, BDv, SBv, GLWR, and WCRK was also conducted in
this study. In contrast to the genotypic PCA results, the two
first PCs explained 56% of the total variance. This was signif-
icantly higher than the proportion explained by the genotypic
data. The larger proportion of variation explained by the phe-
notypes compared with the genotypic data can be explained
by the presence of major effect QTLs for different traits. This
was confirmed by the GWAS analysis, especially for the traits
AC, GT–ASV, BDv, and SBv where large effect SNPs were
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F I G U R E 5 Grain quality genomic selection cross-validation analysis. Genomic selection fivefold cross validation analysis for 10 grain quality
traits evaluated in VIP (VIOFLAR Informative Panel) lines from the 1999 to 2015 yr-nurseries using four genomic selection models: ridge
regression (rrBLUP), Reproducible Kernel Hilbert Space (RKHS), Bayesian LASSO (BL) and random forest (RF). GT–ASV,
gelatinization-temperature expressed as alkali-spread value; SBv, setback-viscosity; SNP, single nucleotide polymorphism

associated with these traits. A multivariate cluster analysis
using the same grain quality phenotypes grouped the VIP
lines in five clusters. Cluster 2, which accounts for 30% of
the VIP lines, met, on average, all the minimum grain qual-
ity standards defined by FLAR for different LAC markets.
These quality standards were defined as OHRR ≥60%, AC
≥26.5%, GT–ASV ≥5, BDv ≤800, SBv ≥1,600, GLWR ≥3.2,
and WCRK ≤7.08%. The VIP lines in Cluster 2 are a source
of germplasm to develop cultivars for most LAC rice markets.

Improvement of genotypic value for different grain qual-
ity traits is essential to develop better cultivars that meet
the quality demands of LAC rice markets. To better under-
stand the total and additive genetic progress of FLAR’s breed-
ing program for different grain quality traits we estimated
genetic trends for the past 20 yr. Positive and negative sig-
nificant (P value <.05) desired genetic trends were observed
for DHHR, BDv, SBv, GL, GW, and GLWR. These results
showed the effectiveness of FLAR’s breeding program to
breed germplasm with the desire grain appearance, milling,
and cooking qualities. No significant effects in the genetic
trend were observed for AC and GT–ASV. This can be
explained by early selection and maintenance of germplasm
with high AC and GT–ASV values. These traits were prior-
itized early in the breeding program. Evidence of this was
observed in the phenotypic cluster analysis where every clus-
ter except number 5 and 4 met the minimum requirements
for AC and GT–ASV, respectively. Negative undesired sig-
nificant genetic trends were observed for OHRR. Increas-
ing values’ chalkiness, WCRK, and GL have been associ-
ated with increased breakage during milling (Counce et al.,

2005). A negative genetic correlation with GLWR may par-
tially explained this trend where the selection of grains with
higher GLWR values may unintentionally decrease overall
levels of OHRR. In addition, high genotype × environment
effect observed for OHRR can decrease the progress of selec-
tion. Routine evaluation of OHRR in combination with novel
strategies such as MAS and GS that includes genotype × envi-
ronment interactions can improve the rate of genetic gain for
OHRR.

Our GWAS in the VIP lines identified three SNPs sig-
nificantly associated with AC. Two of these SNPs, WX-
A_GROUP, and WX-A-RC222, located on chromosome 6,
are diagnostic markers that detect different functional alleles
in exon 6 and 10 of the Waxy gene (Wx) (Dobo et al., 2010;
Teng et al., 2017). Waxy encodes for the GBSS I enzyme
that is responsible for amylose synthesis (Hanashiro et al.,
2008). The third SNP, chr06:4641044, colocalized with two
QTLs (AAC_MTA3 and AAC_MTA4) reported in a previous
GWAS for different starch parameters in rice (Biselli et al.,
2019). The authors concluded that QTLs AAC_MTA3 and
AAC_MTA4 were in the same LD block as Waxy (Biselli
et al., 2019). Our findings showed that gene Waxy was asso-
ciated with the GWAS peak, explaining a large proportion
of the phenotypic variation for AC. Haplotypes constructed
using the three functional Waxy markers; WX-INT, WX-
A_GROUP, and WX-A-RC222 explained 60% of the pheno-
typic variances of AC in the VIP lines. These three markers,
WX-INT, WX-A_GROUP, and WX-A-RC222, can be used
for MAS strategies to select germplasm with intermediate and
high amylose in FLAR’s breeding program.
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F I G U R E 6 Genetic trends for traits OHRR (optimal head rice recovery), DHRR (delayed head rice recovery), AC (amylose-content),
GT–ASV (gelatinization-temperature expressed as alkali-spread value), BDv (breakdown-viscosity), SBv (setback-viscosity), GL (grain length), GW
(grain width), GLWR (grain length to width ratio), and WCRK (white core rice kernel) across 20 years. Additive (AGT, in blue) and total (TGT, in
red) genetic gain for (A) OHRR, (B) DHHR, (C) AC, (D) GT–ASV, (E) BDv, (F) SBv, (G) GL, (H) GW, (I) GLWR, and (J) WCRK
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The SNPs WX-A_GROUP and WX-A-RC222 were also
found significantly associated with DHRR, BDv, and SBv.
Different studies have demonstrated that the molecular prop-
erties of AC, such as chain length, branching ratio, and molec-
ular mass, affect rice pasting viscosity, rate of starch retrogra-
dation, gel texture, and chalkiness (Gidley & Bulpin, 1989;
Mua & Jackson, 1997). Xu et al. (2016) conducted a GWAS
of eating and cooking qualities in indica rice and identified
makers linked to Waxy associated with BDv and SDv. Our
study validated Xu et al.’s (2016) GWAS results. Functional
Waxy allele markers explained 17 and 49% of the pheno-
typic variation for BDv and SDv, respectively. The cooking
quality trait SBv is related to starch retrogradation tendencies
after gelatinization and cooling periods (Shafie et al., 2016).
Using haplotypes defined with the two markers identified in
this GWAS, WX-A_GROUP, and WX-A-RC222, lines can be
grouped into high, intermediate, and low SBv in MAS strate-
gies. The Waxy gene not only play a key role in controlling eat-
ing and cooking quality but also influences other traits includ-
ing HRR. Zhou et al. (2015) showed that the Waxy region was
significantly associated with HRR. Our results showed that
Waxy was particularly important when HRR was measured
under delayed harvest conditions (DHRR). The pleiotropic
effects of Waxy on AC, BDv, SBv, and DHRR can explain
the higher genetic correlations observed among these traits
and the intricate relationships between cooking and milling
quality traits in rice.

The diagnostic marker SSIIA-3B tagging the SSIIa gene
was significantly associated with GT–ASV, explaining 76%
of the total phenotypic variation for GT in the VIP lines.
The SSIIa gene is involved in the synthesis of intermediate
amylopectin chains (Bao et al., 2014). The reduction or com-
plete loss of SSIIa can alter the composition and amount of
starch in the endosperm (Luo et al., 2015). Our GWAS showed
that SSIIa not only affect GT–ASV, but it also has signifi-
cant effects in the phenotypic variation of BDv and WCRK.
According to Luo et al. (2015) and Butardo et al. (2020), the
phenotypic outcome of SSIIa variation include elevation in
AC, increase in the amount of short amylopectin chains result-
ing in the proportional decrease in the intermediate chains,
reduction of amylopectin content, lowering gelatinization-
temperature, and alterations in starch crystallinity and viscos-
ity, which is consistent with the observed association between
BDv and the functional SSIIa marker SSIIA-3B. The gene
SSIIa has been reported to be a major factor explaining up
to 17% of the degree of endosperm chalkiness in a panel of
375 advance indica lines (Zhao et al., 2015). Our results con-
firmed previous findings by showing the significant associ-
ation between the gene SSIIa and WCRK, which is a type
of chalkiness. The large phenotypic effect explained by SNP
SSIIA-3B on GT–ASV makes it an ideal marker for MAS
strategies to differentiated FLAR’s germplasm with low and
high-intermediate to high GT. Again, the pleiotropic effects of

SSIIa on GT–ASV, BDv, and WCRK can partially explained
the high genetic correlation observed among these three traits.

Three novel QTLs were found on chromosomes 9, 5, and
7 associated with OHHR, DHRR, and GLWR, respectively.
According to Bao (2014), up to 34 QTLs located at all chro-
mosomes have been reported in 10 studies for HRR. The new
QTLs in chromosome 9 and 5 explained 3 and 5% of the phe-
notypic variation for OHHR and DHRR. These results con-
firm the complex genetic architecture of HRR. For the trait
GLWR, the locus on chromosome 7, defined by a SNP located
at 25,339,609 bp, was found to be significantly associated.
This region is ∼1 Mb upstream of qGL7-2 (Shao et al., 2010),
a region associated with GL in rice. Further genetic mapping
studies need to be carried out to determine if these two QTLs
are the same or are explained by different genetic factors. The
SNP chr07.25339609, explaining 19% of the phenotypic vari-
ation for GLWR, is a candidate for MAS to detect lines with
high GLWR. The grain shape qualities GL and GW had the
lower standard deviations among the quality traits measured
in the VIP with average values of 7.01 and 3.2 mm and stan-
dard deviations of 0.3 and 0.2 mm, respectively. The 1k-RiCA
contains a trait marker associated with grain size and shape.
The marker ‘GS3’ for grain size, located in chromosome 3
(Mao et al., 2010), has the desired allele T for long-grain fixed
in the VIP lines.

As we showed, some of the loci identified in this GWAS can
explained the complex genetic correlation among different
grain quality traits. The degree of genetic correlation among
these traits can enhance or diminish progress from selection.
This study found that AC had a positive genetic correlation
with WCRK and a negative genetic correlation with DHRR.
Besides germplasm with high AC, FLAR aims to develop
cultivars with low WCRK (≤0.8) and high DHRR (≥57%)
These correlations indicated that, either by pleiotropic or link-
age effects, selecting higher AC could select lines with unde-
sired WCRK and DHRR values. This study showed that the
diagnostic Waxy allelic marker WX-A_GROUP was associ-
ated with AC and DHRR showing evidence of pleiotropy
effects explaining the genetic correlations observed. This
GWAS identified the marker SSIIA-3B in chromosome 6 sig-
nificantly associated with WCRK. The marker SSIIA-3B is
located 19 cM away from WX-A_GROUP, showing evidence
of linkage and possibly partially explaining the genetic cor-
relation between both traits. Despite these undesired correla-
tions, FLAR has been able to significantly improve the total
genetic gain forDHRR and WCRK. Careful evaluation of AC,
DHRR, and WCRK has allowed FLAR to identify recom-
binants with desired AC, DHRR, and WCRK. In contrast,
desired positive genetic correlation between AC, GT–ASV,
OHHR, and SBv were consistent to previous studies (Pang
et al., 2016).

Through cross-validation analysis this study explored the
possibility for implementing GS to improve grain milling,
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quality, and appearance traits in FLAR’s breeding program.
Prediction accuracies of 0.45, 0.47, 0.6, 0.5, 0.5, 0.72, 0.56,
0.51, 0.63, and 0.47 for OHHR, DHRR, AC, GT–ASV, BDv,
SBv, GL, GW, GLWR, and WCRK, respectively, demon-
strated the potential to implement GS in FLAR’s breeding
strategies for grain quality. Overall, higher prediction accura-
cies were observed when BL and RF were implemented. Gre-
nier et al. (2015) described that higher prediction accuracies
by BL were the consequence of fitting a reduced number of
explanatory variables to the model, fitting some markers to
zero effect, and making it possible to avoid overparameteriza-
tion for a trait controlled by a few major loci as it was shown by
the GWAS results. Nonlinear methods such as RF have been
shown to effectively captured large-effect QTL in rice (Spin-
del et al., 2015). These results suggest that models such as BL
and RF can be used when large effect QTLs are known to be
segregating for grain quality traits. In addition, RF has been
shown to work best with smaller number of markers (Spin-
del et al., 2015), ideally when low-density cost-effective geno-
typic platforms are used. This study can be expanded in future
studies to implement different models that include genotype ×
genotype and genotype × environment large effect QTLs and
training set optimization to improve prediction abilities.

This study provided a pathway to effectively implement
MAS and GS to improve grain milling, appearance, cooking,
and edible qualities for rice markets in LAC. The markers
identified in this study associated with AC, GT–ASV, and
SBv can be deployed at different genotyping service providers
to integrate forward breeding strategies and perform selection
at early stages of the breeding program. The cost-effective
genotyping platform 1k-RiCA can be routinely used in GS
strategies in FLAR’s breeding program. Further studies need
to be done to design the best strategy to deploy GS in FLAR’s
breeding program that complement the current phenotypic
selection strategies to develop rice cultivars with specific
grain quality profiles suited for LAC and different export
markets.
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