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ABSTRACT Here, we report a new draft genome sequence of an isolate of the as-
comycete Claviceps paspali that is responsible for ergot disease in grasses of the Pas-
palum genus. This new draft genome sequence will provide useful data for evaluat-
ing intraspecies and interspecies genome variation in C. paspali and other Claviceps
genus members.

Claviceps paspali (Sordariomycetes, Ascomycota) is a phytopathogenic causal agent
of ergot disease in Paspalum spp. This disease is important for dairy and beef

production because it affects highly productive, drought-resistant forage grasses, such
as Paspalum dilatatum (1, 2). Ergot results in seed losses by seed replacement with the
sclerotia of the fungus and also the production of tremorgenic toxins by the fungus,
which are toxic to feeding animals (3, 4).

C. paspali ILB432 was isolated from sclerotia obtained from Paspalum urvillei-infected
inflorescences collected near Portezuelo, Maldonado, Uruguay (global positioning system
coordinates 34.888591S, 55.030316W), using a previously reported C. paspali isolation
procedure (5). ILB432 was cultured at 26°C on Claviceps medium containing 36 g/liter
potato dextrose agar, 2 g/liter yeast extract, 10 g/liter malt extract, 10 g/liter sucrose, and
5 g/liter agar (6). Phylogenetic analysis based on the partial gene coding for the second
largest subunit of RNA polymerase subunit II (RPB2) showed that ILB432, like reference
isolate RRC-1481, belongs to the most frequent lineage of C. paspali (5).

DNA was isolated from vegetative mycelia using the Quick-DNA fungal/bacterial kit
(Zymo Research) following the manufacturer’s instructions and was sent to Macrogen,
Inc. (Seoul, South Korea), for sequencing. DNA libraries of 500-bp inserts were gener-
ated with the TruSeq Nano DNA kit (Illumina), and 150-bp paired ends (PEs) were
sequenced with the Illumina HiSeq 2500 platform.

Raw reads were trimmed to remove the adapter and low-quality sequences with
Trimmomatic v0.36 (7). A total of 63,447,991 PE filtered reads were used for the de novo
genome assembly using SPAdes v3.13.1 (8) with multiple k-mer sizes (21, 33, 45, 57, 69,
81, 93, 105, and 117) and the “– careful” option. The resulting assembly was analyzed
using QUAST v4.6.1 (9). Species-specific repeats were inferred using the program
RepeatModeler v2.0.1 (10), and Repeatmasker v4.1.0 (11) was employed to mask
resulting repeats. Genome completeness was assessed using BUSCO v4.0.6 (12) (ge-
nome mode) against the Ascomycota_odb10 database. The newly assembled genome
sequence contained 1,678 (98.4%) complete (single-copy and duplicated) BUSCO or-
thologs of the 1,706 present in the Ascomycota_odb10 database. Genome size and
completeness results were similar to those of reference strain RRC-1481, which contains
1,653 complete BUSCO orthologs (Table 1).
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This improvement in sequencing methodology is reflected in the lower number of
contigs and higher N50 values of this new genome sequence compared to those of the
previous reference genome (Table 1). This study provides highly useful data for
evaluating genome variation within C. paspali (7) and the Claviceps genus.

Data availability. This whole-genome shotgun project has been deposited in
DDBJ/ENA/GenBank under the BioProject number PRJNA625338. This whole-genome
shotgun project has been deposited at DDBJ/ENA/GenBank under the accession num-
ber JABAJK000000000. The version described in this paper is version JABAJK010000000.
Raw reads are available under SRA accession number SRR11565825. The RPB2 sequence
is available under accession number MT348393. The pure isolate of C. paspali ILB432 is
stored at the INIA Las Brujas fungal collection (ILB); for samples of the isolate, contact
Eduardo Abreo at eabreo@inia.org.uy.
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