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Abstract
The UK Government has set an ambitious target of achieving a national “net-zero” greenhouse gas economy by 2050. Agri-
culture is arguably placed at the heart of achieving net zero, as it plays a unique role as both a producer of GHG emissions and 
a sector that has the capacity via land use to capture carbon (C) when managed appropriately, thus reducing the concentra-
tion of carbon dioxide  (CO2) in the atmosphere. Agriculture’s importance, particularly in a UK-specific perspective, which 
is also applicable to many other temperate climate nations globally, is that the majority of land use nationwide is allocated 
to farming. Here, we present a systematic review based on peer-reviewed literature and relevant “grey” reports to address 
the question “how can the agricultural sector in the UK reduce, or offset, its direct agricultural emissions at the farm level?” 
We considered the implications of mitigation measures in terms of food security and import reliance, energy, environmental 
degradation, and value for money. We identified 52 relevant studies covering major foods produced and consumed in the 
UK. Our findings indicate that many mitigation measures can indeed contribute to net zero through GHG emissions reduc-
tion, offsetting, and bioenergy production, pending their uptake by farmers. While the environmental impacts of mitigation 
measures were covered well within the reviewed literature, corresponding implications regarding energy, food security, and 
farmer attitudes towards adoption received scant attention. We also provide an open-access, informative, and comprehen-
sive dataset for agri-environment stakeholders and policymakers to identify the most promising mitigation measures. This 
research is of critical value to researchers, land managers, and policymakers as an interim guideline resource while more 
quantitative evidence becomes available through the ongoing lab-, field-, and farm-scale trials which will improve the reli-
ability of agricultural sustainability modelling in the future.
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1 Introduction

While agriculture contributes less than 1% to the United 
Kingdom’s (UK’s) economy, it provides around three-
quarters of domestic food consumption and utilizes around 
71% of the land. Approximately 72% of the latter is used for 
grazing systems and 26% for arable crops including cere-
als, oilseeds, and potatoes, with the remaining land (~2%) 
being utilized for produce such as medicinal plants and herbs 
(Defra 2021). As a food-trading nation, the UK relies on 
both imports and a thriving domestic agricultural sector 
to feed itself and drive economic growth (ADAS 2019). In 
the most recent national inventory assessment of UK emis-
sions, agriculture accounted for ~10% of total greenhouse 
gas (GHG) emissions (Brown et al. 2020). Despite the rela-
tively low total emissions arising from primary food produc-
tion compared to other sectors, such as energy and transport 
(BEIS 2022), the agricultural sector is the major source of 
both nitrous oxide  (N2O) and methane  (CH4) emissions in 
the UK, both of which are powerful and complex GHGs, 
accounting for nearly 69% of total  N2O emissions and 48% 
of total  CH4 emissions in the UK, respectively (Defra 2021). 
In contrast, agriculture only accounts for ~1.7% of total car-
bon dioxide  (CO2) emissions (Defra 2021). More specifi-
cally, nearly 90% of agricultural  N2O emissions originate 
from soils through microbial (de)nitrification of nitrogen-
based fertilizers, farmyard manure (FYM), and deposition 
of urine and feces on grazing/foraging lands and indirectly 
through leaching/runoff and volatilization primarily from 
ammonia  (NH3). Most  CH4 emissions (~90%) arise from 
enteric fermentation (digestive processes, specifically eruc-
tation) in ruminant animals, with manure management prac-
tices accounting for the remainder.

The agricultural sector accounted for 88% of the UK’s 
 NH3 emissions in 2021 (Defra 2021).  NH3 is generated 
from the application of synthetic (e.g., ammonium nitrate) 
and organic fertilizers (e.g., slurry and manure) to soils and 
during storage. Further, while rates of soil erosion in Eng-
land are not excessively high by global standards, rates on 
agricultural land are elevated relative to those under natural 
land covers, resulting in elevated sediment delivery to riv-
ers (Collins and Zhang 2016; Collins et al. 2021) leading to 
off-farm impacts including degradation of aquatic ecology 
(e.g., Kemp et al. 2011) and the siltation of drinking water 
reservoirs (Foster et al. 2011).

The Committee on Climate Change (CCC) has recom-
mended a 64% reduction in GHG emissions from the agri-
culture and land use sector to meet the national 2050 net-
zero GHG target in the UK (CCC 2020). The fact that this is 
not a 100% reduction reflects the natural biological baseline 
emissions associated with primary food production (e.g., 
even if the land was “rewilded,” there would still be baseline 
emissions arising from unproductive land, due to microbial 
activity during natural decomposition cycles) (CIEL 2020). 
In line with the CCC, the National Farmers Union (NFU) 
of England and Wales established an ambitious goal of net 
zero by 2040, while assuring climate-friendly food produc-
tion with high standards of food safety, animal welfare, and 
environmental stewardship. For instance, agriculture will 
need to reduce emissions from its production and increase 
its potential to sequester soil organic carbon (SOC) through 
land occupation optimization, with GHG offsetting strategies 
(Fig. 1) such as afforestation and silvopastoral systems being 
prime exemplars of mitigation pathways (Eory et al. 2020).

Mitigation measures for delivering the UK Government’s 
net-zero target by 2050 must consider both the economic 
(e.g., food production and reliance on imports) and envi-
ronmental sustainability of production systems going for-
ward (CIEL 2022). Furthermore, the NFU highlighted the 
fact that the transition of agriculture to net-zero GHGs must 
ensure the economic, environmental, and social benefits of 
farming, such as supporting rural workforces and delivery 
of nutritious produce, are protected (NFU 2021a). Environ-
mental scientists and engineers, social scientists, nutritional 
scientists, and economists are therefore tasked to seek ways 
to increase productivity while at the same time reducing 

Fig. 1  Example of offsetting mitigation measure: planting hedgerows 
into sheep-grazed pasture in southwest England. Apart from GHG 
mitigation potential, through SOC sequestration, establishing hedge-
rows provides a range of co-benefits to livestock and the landscape. 
Trees can boost production, improve animal health and welfare, and 
provide wider environmental benefits (see Section 3.7).
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environmental damage and maintaining the healthy func-
tion of agroecosystems (e.g., increasing biodiversity, often 
measured as species losses-gains per year, while simultane-
ously reducing GHGs) in the long term (Tilman et al. 2011; 
Tilman and Clark 2014).

An important part of working towards net zero includes 
the accurate accounting of GHG emissions. The national 
inventory accounting forms the basis of international climate 
change treaties (e.g., the Kyoto Protocol). Another, more 
holistic, approach to quantifying supply-chain-level environ-
mental impacts is life cycle assessment (LCA), a determin-
istic modelling framework widely used in agricultural sus-
tainability analyses. In contrast to national GHG inventories, 
detailed LCAs quantify losses of pollutants occurring in other 
countries for imported products associated with food pro-
duction, such as animal feed (e.g., displaced protein-sources 
imported from the Americas), and fertilizer chemicals (CIEL 
2020). As such, LCA provides a deeper, global view of the 
C footprint for any product or service (Müller et al. 2020). 
However, despite recent computational and mathemati-
cal improvements to LCA, data availability remains one of 
the major limiting factors when utilizing the framework to 
answer pressing societal concerns pertaining to environmen-
tal degradation (McAuliffe 2020a). In the absence of suitable 
life cycle inventory analyses (LCI) material flows, assessing 
the potential of GHG abatement efforts is challenging. For 
instance, predictions made by scenario-based LCA models 
in the context of net zero are currently liable to high degrees 
of uncertainty, despite numerous methodological capabilities 
to capture such data-based restrictions (ISO 2006; Cain et al. 
2019; Müller et al. 2020; McAuliffe et al. 2020b).

Systematic reviews provide a rigorous, objective, and 
transparent means of creating a searchable database of rel-
evant academic and grey literature (Kohl et al. 2018), while 
providing an opportunity to clarify the current evidence base 
and highlight important knowledge gaps. To the best of our 
knowledge, the most recent review on climate change miti-
gation in the UK was a literature review that focused only 
on cropping systems (i.e., food-crop production, particu-
larly arable systems including root crops; Rial-Lovera et al. 
2017). Other reviews related to broader sustainability assess-
ments (e.g., exploration of environmental impacts including 
water pollution and terrestrial acidification, both of which 
indirectly produce GHGs and thus affect the achievement of 
net zero) have covered livestock in general (de Vries and de 
Boer 2010), beef production (de Vries et al. 2015), pig pro-
duction (McAuliffe et al. 2016), the nutrition-environment 
nexus (McAuliffe et al. 2020a), and technical issues related 
to complexities such as how to allocate burdens arising from 
dairy systems which produce multiple (co)products such as 
milk and beef (Rice et al. 2017).

In this new systematic review, we synthesized a quantita-
tive and qualitative dataset (see data in brief in Jebari et al. 

(2023)) of existing and potentially viable GHG mitigation 
measures and technologies which can be deployed on farms, 
regardless of whether they are arable, livestock, or mixed 
farms, including rotational systems. We refer to scientific 
literature and aggregated data that are key to the net-zero 
objectives, thus exploring environmental, economic, and 
societal perspectives for different mitigation measures.

2  Structure of the systematic review

2.1  Search strategy

We followed the Collaboration for Environmental Evidence 
(CEE) guidelines and methodology therein to create our sys-
tematic review (CEE 2018) (Fig. 2). Only papers or reports 
published in English were considered for inclusion under the 
following structure:

Activity terms: “arable crops,” “cereal,” “wheat,” “barley,” 
“oilseed,” “potato,” “horticulture,” “livestock,” “dairy,” 
“beef,” “cattle,” “pig,” “sheep,” “poultry,” “chicken,” “tur-
key,” “mixed farm,” “cow,” “grassland,” “pasture,” “oat”
Intervention terms: “management,” “practice meas-
ures,” “alternative technology”
Outcome terms: “carbon footprint,” “greenhouse gas emis-
sions,” “direct emissions,” “indirect emissions,” “meth-
ane,” “nitrous oxide,” “carbon dioxide,” “ammonia,” and 
“nitrate.”

The search terms within each of the three categories 
(activity, intervention, and outcome) were combined using 
the Boolean operator “OR.” We combined the three catego-
ries into a search string using the Boolean operator “AND.” 
The search string was modified depending on the function-
ality of different databases (e.g., looking for keywords or 
topics), specialist sustainability-related websites, and search 
engines (e.g., Scopus). The temporal boundary of the litera-
ture search applied included recent relevant information and 
data published during the last 5 years (i.e., between 2017 and 
2022). The purpose was to update the most recent literature 
and available technological advances in the agricultural sec-
tor of the UK. All the searches were performed in English 
in June 2022. The geographic boundary focused as far as 
feasibly possible on UK-specific literature; however, studies 
which covered multiple nations, including the UK, were also 
assessed. Despite focusing primarily on the aforementioned 
temporal boundary, older material sourced via “snowball” 
searching (i.e., identifying relevant sources of information 
via reference lists within the retrieved papers and reports) 
was also assessed to target novel, updated research streams. 
Recorded references were imported into Mendeley library 
and Rayan (online systematic review software) (Ouzzani 



 A. Jebari et al.

1 3

    2  Page 4 of 21

et al. 2016). All duplicates were removed, and their numbers 
were recorded (Jebari et al. 2023).

2.2  Publication databases

The search included the following online scientific 
databases:

1. Web of Science Core Collection (https:// mjl. clari vate. 
com/ home)

2. Scopus (https:// www. scopus. com/)

3. Rothamsted Repository (https:// repos itory. rotha msted. 
ac. uk/)

4. British Library (ETHOS) (https:// ethos. bl. uk/)
5. Formerly American Doctoral Dissertations (EBSCO) 

(http:// search. ebsco host. com/ login. aspx? autht ype= 
ip,athen s& custid= ns010 809& group= main& profi le= 
ehost)

Specialist websites of relevant UK organizations listed 
below were also searched in June 2022 for links or refer-
ences to relevant articles and data (i.e., “snowball sampling,” 
as mentioned previously), including grey literature:

Fig. 2  RepOrting standards for 
Systematic Evidence Synthe-
ses (ROSES) flow diagram 
(Haddaway et al. 2018) showing 
literature sources and inclusion/
exclusion process.

https://mjl.clarivate.com/home
https://mjl.clarivate.com/home
https://www.scopus.com/
https://repository.rothamsted.ac.uk/
https://repository.rothamsted.ac.uk/
https://ethos.bl.uk/
http://search.ebscohost.com/login.aspx?authtype=ip,athens&custid=ns010809&group=main&profile=ehost
http://search.ebscohost.com/login.aspx?authtype=ip,athens&custid=ns010809&group=main&profile=ehost
http://search.ebscohost.com/login.aspx?authtype=ip,athens&custid=ns010809&group=main&profile=ehost
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1. Department for Environment and Rural affairs (Defra) 
(http:// defra. gov. uk/)

2. National Farmers' Union (NFU) (https:// www. nfuon line. 
com/)

3. Bangor University (http:// www. bangor. ac. uk/)
4. North Wyke Publications Platform (https:// www. rotha 

msted. ac. uk/ north- wyke- farm- platf orm

2.3  Article screening and study eligibility criteria

Article screening was evaluated for relevance based on the 
eligibility criteria at three levels, title, abstract, and full text, 
using the systematic review software Rayan. Articles were 
first evaluated for eligibility based on their titles. The pri-
mary strategy was to be as inclusive as possible within the 
boundaries described in Section 2.1. Each article found to 
be relevant based on its abstract was judged for eligibility 
by screening the full text. The excluded articles dealt with 
keywords related to health or food industry (either upstream 
or downstream from the farmgate), and coastal and marine 
ecosystems, rather than agricultural systems. Addition-
ally, phosphorus pollution was omitted due to its negligi-
ble impacts on GHG emissions (interactions of nutrients 
within soils and the influence of nutrient ratios, a complex 
topic, were beyond the scope of the current study). Moreo-
ver, experiments conducted outside the UK or under arid 
or Mediterranean climate conditions were also eliminated.

2.4  Study validity assessment

Eligible studies were subject to a critical appraisal. We 
assessed study validity and categorized relevant studies as 
“validated,” “not validated,” and “unclear validity” (the lat-
ter could also be considered “inconclusive”). Validity criteria 
included both susceptibilities to bias (internal validity: study 
design, strength of evidence, and reliability/replicability) and 
relevance of the study for our review questions (i.e., external 
validity). A study was excluded from the narrative synthesis 
due to internal validity if any of the following factors applied:

1. It does not have replicates (i.e., less than two independ-
ent experimental/observational units), in the case of 
experimental studies.

2. It does not include any uncertainty or sensitivity analysis 
or assessment of the predicted output against measured 
data, in the case of modelling studies.

If none of the above factors applied, the study was vali-
dated, as it complied with both external and internal validity 
(as explained above), whereas studies considered to possess 
unclear validity were subject to internal yet independent 
revision to judge whether the study is validated or not. A 
study was categorized to be “unclear” if it did not report 

sufficient details to judge its validity, for instance, if there 
is a vague methodological description or if it is difficult to 
interpret the efficacy of the mitigation measure discussed.

The final validated studies were included in the narrative 
synthesis. It is worth noting that we considered different agri-
cultural systems and both modelling and experimental studies 
(Fig. 3a, b). The final list of included papers, which cover sev-
eral mitigation measures with various impacts and objectively 
defined win-win strategies (i.e., reducing GHG emissions while 
improving agricultural productivity), was reported with recom-
mendations for future research. Studies at the global scale were 
assessed in terms of the mitigation potential related to the UK.

2.5  Data extraction strategy

We extracted data (and metadata, where applicable) on study 
characteristics (e.g., whether the study deals with experimen-
tal or modelling approaches, or both), description of exposure, 
outcomes, and study findings. In the case of missing or vague 
quantitative values pertaining to GHG mitigation measures 
from the main manuscript, data from available supplementary 
material, as well as graphs using WebPlotDigitiser (https:// 
autom eris. io/ WebPl otDig itizer/), were used. We also con-
tacted authors for missing data. All extracted data were quality 
controlled. Quality control was conducted to identify the value 
of mitigation and implications of each mitigation measure.

To ensure that the extraction of data and metadata was rep-
licable, entries were subsequently extracted by one author and 
cross-checked by another author as part of the quality control 
process. All disagreements amongst team members were dis-
cussed and the coding scheme was subsequently adjusted and 
clarified. Missing data were simply defined as “not stated.”

2.6  Data synthesis and presentation

A qualitative synthesis of a semi-quantitative dataset was con-
ducted as the primary goal to initiate a strategic pathway to 
net zero through the interpretation of state-of-the-art sustain-
ability literature with a specific focus on GHG mitigation. The 
coding of the data presented in the synthesis is illustrated in 
supplementary Table S1 (see Supplementary Material). Our 
coding process refers to the different questions addressed in the 
introduction section, regarding the mitigation measure, and its 
implications in terms of economy, environmental sustainability 
(particularly GHG emissions), food security, and energy.

3  Mitigation measures

The outputs derived from the systematic review are sum-
marized in Tables S1, S2, and S3, according to the pri-
mary mitigation measures under three pillars: reducing 

http://defra.gov.uk/
https://www.nfuonline.com/
https://www.nfuonline.com/
http://www.bangor.ac.uk/
https://www.rothamsted.ac.uk/north-wyke-farm-platform
https://www.rothamsted.ac.uk/north-wyke-farm-platform
https://automeris.io/WebPlotDigitizer/
https://automeris.io/WebPlotDigitizer/
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emissions and/or production efficiency (Table S1), offset-
ting, and bioenergy production (Table S3).

3.1  Arable systems’ mitigation measures

Regenerative and soil conservation practices, such as cover 
cropping and reduced tillage, enhance SOC stocks while 
providing important ecosystem services such as enhancing 
water retention and reducing soil erosion. As a result, cover 
cropping with legumes for different arable crops demon-
strates sequestration up to 800 kg C  ha−1  year−1 (Glenk et al. 
2017) and could potentially sequester up to 16% C up to the 
year 2050 (Jordon et al. 2022). Similarly, reduced tillage was 
estimated to sequester up to 100 kg C  ha−1  year−1 (Glenk 
et al. 2017) and reduce up to 25% of GHG emissions at 5 
cm depth in arable cropland (Alskaf 2018). In this context, 
a global meta-analysis of 946 paired data from 116 peer-
reviewed studies showed that, overall, no tillage reduced 
global warming potential by 14.4% (Li et al. 2023).

Although cover crops and reduced tillage may imply a 
reduction in operational costs related to energy, they might 

induce a reduction in crop yield in the short and medium 
term (Glenk et al. 2017). On the other hand, cover crops 
maintain soil fertility in the longer term (Sun et al. 2011), 
thus signifying the need for policy intervention including 
financial incentives for farmers during the early stages of 
the transition from ploughing to conservation agriculture to 
offset potential yield reductions (Alskaf 2018).

Management practices including cover cropping and 
reduced tillage, as mentioned above, align with conservation 
agriculture through the improvement of soil and water qual-
ity by reducing runoff and leaching, enhancing water reten-
tion, and preventing soil erosion (Alskaf 2018; Warner et al. 
2017). Accordingly, these measures should be targeted to 
geographic areas with higher erosion risk (e.g., hilly terrain 
and certain soil types) and where arable farming is found 
to contribute significantly to diffuse water pollution (Glenk 
et al. 2017). Weed management and pests including slugs 
were, however, identified as considerable challenges for 
reduced tillage adopters (Alskaf 2018). In this context, ley 
integration in arable rotation systems offset 27% of British 
agricultural emissions through SOC sequestration (Jordon 

Fig. 3  Number of studies per 
agricultural system (a) and 
study category (b).
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et al. 2022), while simultaneously being adopted as a tool 
to control weeds which evolved to gain herbicide resistance 
(e.g., blackgrass; Jordon et al. 2022). The mitigation poten-
tial is lower at the European level when including leys in 
rotations with annual crops (i.e., 4 to 10%), according to 
Englund et al. (2023).

Soil amendment under specific edaphoclimatic conditions 
is considered to be a  CO2 removal technique. Particularly, 
soil amendment in the form of spreading crushed silicate 
rocks such as basalt to croplands, known as enhanced rock 
weathering, has been shown to be an effective mitigation 
measure in acidic loamy soils (Kelland et al. 2020). This 
mitigation measure aims to accelerate natural geological 
processes of SOC sequestration (as it enhances SOC stocks 
by a factor of four) and reduces energy demands for milling 
(occasionally carried out on-farm; McAuliffe et al. 2017) 
and associated carbon emissions from the use of fossil fuels 
(Lefebvre et al. 2019). According to Kelland et al. (2020), 
this intervention is beneficial for both farmers and the envi-
ronment since economic gains derived from yield improve-
ment could offset the purchase and operational costs of 
enhanced rock weathering. Moreover, a supplemental source 
of silicon (Si), calcium (Ca), and potassium (K) can be pro-
vided without any increase in toxic trace elements. These 
elements, apart from improving crop production, increase 
protection from pests and diseases, and restore soil fertil-
ity and structure (Beerling et al. 2018). As a consequence, 
the well-managed soil amendment addresses multiple UN 
Sustainable Development Goals (Smith et al. 2019) and con-
tributes to net-zero objectives.

Similarly, another important soil amendment is the 
replacement of ammonium sulfate with a different form of 
sulfur (S) (e.g., single superphosphate, potassium sulfate, 
magnesium sulfate, calcium sulfate dihydrate (gypsum), and 
polyhalite (polysulphate)), which are most notably observed 
on high pH soils (Powlson and Dawson 2022). With each of 
these S fertilizers, the content of phosphorus (P), K, mag-
nesium (Mg), or Ca needs to be considered when deciding 
on other nutrient applications (Powlson and Dawson 2022). 
Elemental S can also be used, but it is more slowly available 
to crops than the other forms as it must first be oxidized to 
sulfate by soil bacteria and the rate of conversion is some-
what unpredictable (Malhi et al. 2005). This relatively easy 
measure would make a significant contribution to reducing 
 NH3 emissions (i.e., by 90%; Powlson and Dawson 2022). 
Biochar application to soils has also been recommended as 
an important component of the pathway to “climate-smart 
soil” management practices in modern agriculture (Pura-
kayastha et al. 2019). It has been shown to improve soil 
quality (soil bulk density, porosity, water retention, soil 
aggregation, and hydraulic conductivity; Purakayastha et al. 
2019). Moreover, the increase in soil pH with biochar addi-
tion would result in a greater availability of primary and 

secondary nutrients like K, P, Ca, and Mg, as reported by 
Purakayastha et al. (2019).

Regardless of the pedoclimatic conditions, biosolid appli-
cation to croplands provided valuable evidence in support of 
maintaining a sustainable agricultural landbank for biosolid 
recycling in the UK (Water UK 2010). Indeed, the mitiga-
tion measure helped to reduce up to 17% of GHG emissions 
(through SOC sequestration) in established experimental 
platforms at four sites in England with contrasting soil types 
and agroclimatic conditions (Nicholson et al. 2018). The 
mitigation potential through SOC accumulation in the lat-
ter study is comparable to 19% in Canadian croplands after 
biochar application (Gross et al. 2022). Moreover, biosolids 
amongst other environmentally positive impacts related to 
increasing water infiltration rate may improve soil quality 
and fertility. Biosolids contain valuable quantities of crop-
available N, which can replace some of the required mineral 
fertilizer N together with increasing soil extractable P and 
total S for the plants (Rigby et al. 2016).

Acidification of digestate has been shown to be an effec-
tive mitigation measure for the utilization of food waste 
because it contributes to the mitigation of N losses (with 
around 95% reduction of cumulative  NH3 losses, which 
indirectly produce  N2O through microbial nitrification) fol-
lowing application to croplands (Sánchez-Rodríguez et al. 
2018). This mitigation measure provides an environmentally 
sound option for N management and higher yields, as well as 
the production of renewable energy via anaerobic digestion 
(Kataki et al. 2017).

It is worth noting the importance of appropriate crop 
nitrogen management to avoid unnecessary trade-offs (e.g., 
potential increase in ammonia volatilization and nitrate 
leaching and ensure optimal crop production). In this con-
text, Cammarano et al. (2021), for example, established an 
optimal N fertilizer rate of 120–140 kg N  ha−1, in malting 
barley production in order to maximize the economic return, 
maintain acceptable grain N%, and minimize environmental 
impacts including marine and terrestrial eutrophication.

3.2  Livestock systems

3.2.1  Manure management

Introducing anaerobic digestion to grassland-based livestock 
systems has demonstrated mitigation of the C footprint of 
livestock production (Webb 2017). For instance, the anaero-
bic treatment of dairy processing effluents showed a miti-
gation potential of 15.1 kg  CO2-eq according to Stanchev 
et al. (2020). Likewise, via predictive modelling based on 
the IPCC refined methodology, Scott and Blanchard (2021) 
simulated up to 44% reduction of total commercial dairy 
farm emissions through the adoption of anaerobic diges-
tion. This is in line with Battini et al. (2014), as anaerobic 
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digestion can lead to an over 30% reduction in GHG emis-
sions, compared to traditional manure treatment. Although 
its implementation can be challenging, especially for small 
farms (due to the cost) or those located with insufficient 
access to water (Smith et al. 2021), anaerobic digestion pro-
vides diverse positive environmental impacts. For instance, 
high bioavailable N from digestate enables lower inorganic 
fertilizer requirements per hectare (Walsh et al. 2018). In 
addition, the application of bio-slurry as an organic fertilizer 
increases SOC sequestration (Walsh et al. 2018). Moreo-
ver, it enables pollution control by removing waste from the 
environment and reducing N and P discharge to the water-
bodies (Scott and Blanchard 2021), and reduces land occu-
pation and ozone depletion (Stanchev et al. 2020).

As briefly mentioned above, anaerobic digestion can be 
expensive and requires improvements in the maintenance 
of digesters to avoid increased emissions (Smith et  al. 
2021). However, energy savings from anaerobic digestion 
are important (NFU 2021b). Such savings are estimated to 
reduce 715 t  CO2-eq  year−1 (41%) for commercial dairy 
farms in Northern Ireland (Scott and Blanchard 2021). 
Exploiting the  CO2 component of biogas and the ability to 
use  CH4 to power farm vehicles are seen as routes to achieve 
a reduction of 50% GHG emissions via offsetting (Scott and 
Blanchard 2021). Accordingly, government support could 
be instrumental in overcoming the costs of investment either 
using capital grants targeting the pollution reduction poten-
tial of systems or tax breaks and profitable tariffs to encour-
age the uptake of anaerobic digestion, thus providing renew-
able energy to the national grid (Scott and Blanchard 2021).

Applying additives to slurry (e.g., acidifiers alum, cal-
cium chloride, and sulfuric acid) has shown abatements of 
 NH3 emissions up to 76% from confined dairy production 
(McIlroy et al. 2019). However, the technologies for the 
application of these additives in livestock housing need to 
be further developed (McIlroy et al. 2019). It is important 
to note that abatement techniques for manure management 
involve a holistic approach and should be implemented at 
both the storage and land spreading stages (Montes et al. 
2013).

3.2.2  Grassland management: fertilization 
and extensification

Several mitigation measures related to N fertilization have 
proved to be efficient in terms of GHG mitigation. For 
instance, organic amendment scheduling compared to a 
traditional one-time application per season may be a use-
ful on-farm mitigation measure for minimizing  N2O emis-
sions (Shah et al. 2020). The use of high-frequency, low-
dose organic fertilizer applications was predicted to reduce 
 N2O peak fluxes (up to 17%) for cattle slurry during the 
autumn and spring seasons (Shah et al. 2020). Furthermore, 

the optimal use of organic fertilizers has potential benefits 
compared to synthetic fertilizers, as it enhances forage yield 
and livestock productivity and soil quality (through SOC 
storage) and provides high-value organic food production 
with a suitable source of bioavailable soil nutrient replenish-
ment (Zheng et al. 2010; Wang 2014; FAO 2017).

The application of nitrification inhibitors during fertiliza-
tion has been shown to mitigate soil emissions (Chadwick 
et al. 2018). For instance, dicyandiamide (DCD) reduced 
 N2O emissions by ~13% under trampled grasslands and 
53% under tractor compaction (Hargreaves et al. 2021). The 
reduction in  N2O emissions is accompanied by a decrease 
in  NO3 leaching and runoff, and  NH3 volatilization, all of 
which are indirect sources of  N2O (Cardenas et al. 2022). 
However, caution should be taken as issues have been raised 
when using nitrification inhibitors, as traces of DCD were 
found in milk when DCD was directly fed to animals (Wel-
ten et al. 2014). Further, swards from grasslands which 
received DCD have been reported to contain traces of DCD 
(Pal et al. 2016). Despite this concern, there is no defined 
threshold concentration for DCD in human-edible produce 
related to food safety as the compound has been reported to 
be non-toxic under typical application rates (OECD 2004).

Similarly, sodium chlorate  (NaClO3) amendment showed 
substantial mitigation potential with more than 60% reduc-
tion in the net nitrification rate under agricultural soils (Fu 
et al. 2018). Likewise, inhibited urea with N-(n-butyl)thi-
ophosphoric triamide (NBPT) was shown to decrease  NH3 
emissions within a range of 48–65% under grasslands in 
England and Wales (Carswell et al. 2019a). However, with 
no apparent yield differences compared to other N fertilizer 
sources (e.g., ammonium nitrate and urea), there is no eco-
nomic incentive for the farmer to use the more environmen-
tally acceptable option, unless externality costs are incor-
porated into fertilizer prices at the point of sale (Carswell 
et al. 2019a).

N fertilizer should be applied optimally through soil test-
ing prior to applications when increasing yield potential. 
Perhaps, the most promising outcome of reduced N ferti-
lizer input is the reduction associated with N leaching into 
waterbodies (which subsequently produces indirect  N2O) 
and direct GHG emissions during manufacture, transport, 
and application (Harris and Ratnieks 2022). The substitu-
tion of fertilizer nitrogen with symbiotically fixed nitrogen 
from legumes (e.g., white clover, Trifolium repens) within 
the range of 30–50% enables mitigation up to 58% g  N2O‐N 
 kg−1 DM yield compared to a baseline with a high fertilizer 
rate of 200 kg N  ha−1  year−1 (Fuchs et al. 2020). This spe-
cific mitigation measure seems beneficial with respect to 
multiple outputs such as yields, N yields, and feeding values 
(Lüscher et al. 2014; McAuliffe et al. 2018), thereby improv-
ing animal health and welfare, through enhanced nutritional 
benefits (Carswell et al. 2019b). Indeed, root-node fixed N 
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provides a supply of N for plants that is more bioavailable 
than occasional fertilizer applications and increases N use 
efficiency (Barneze et al. 2022) while improving diet-level 
sustainability (Costa et al. 2021). The biologically fixed N 
reduces energy costs associated with producing synthetic 
fertilizer with no reduction in productivity (Harris and 
Ratnieks 2022). Moreover, introducing local legumes has 
shown feasibility for replacing imported soy-based feeds, as 
reported by Costa et al. (2021). However, a potential limi-
tation of this mitigation measure can be the challenge of 
achieving high and persistent legume proportions, particu-
larly under grasslands receiving low sunlight or excessively 
cold growth periods (Barneze et al. 2022).

Moving towards extensification by reducing the live-
stock density and N fertilization has been underscored as 
a reliable mitigation measure (Sándor et al. 2018). The lat-
ter demonstrated a reduction of 78% in soil  N2O emissions 
for the mown and grazed site of Easter Bush (Edinburgh; 
Sándor et al. 2018). The reduction in soil  N2O emissions 
is within average estimations (~70%) for grasslands under 
similar conditions (e.g., France and Switzerland) (Sándor 
et al. 2018). The mitigation was accompanied by positive 
implications such as decreases in  NH3 losses and  NO3 leach-
ing, thereby simultaneously reducing indirect  N2O emissions 
(Sándor et al. 2018). On the other hand, intensification, and 
the specialization in livestock production, for example, dairy 
systems, results in both an increase in C footprint, which 
relies on feed importation, and burdens such as eutrophica-
tion and acidification (Soteriades et al. 2019). The effect 
of ongoing trends in dairy farms can be mitigated by (i) 
increasing beef output per unit of milk achievable without 
a large change in a dairy farm’s management and (ii) sus-
tainable intensification of displaced beef-breeds produc-
tion on suckler-beef farms (Soteriades et al. 2019). These 
measures can spare larger areas of land for forest (regionally 
or in major beef-exporting countries such as Brazil; Styles 
et al. 2018). Although this may reduce by up to 11–56% of 
burdens (i.e., GWP, eutrophication potential, acidification 
potential, and land occupation) per liter of milk (Soteriades 
et al. 2019), the investment in technology to maintain pro-
duction levels and improve environmental efficiencies can 
be financially restrictive due to initial capital investment 
requirements (Dumont et al. 2013). Moreover, the positive 
environmental impacts of lower eutrophication and acidifi-
cation potential could be negated by an increase in indirect 
land occupation related to animal feed cultivation (Gonza-
lez-Mejia et al. 2018).

Finally, regarding pork production, partly outdoor organic 
production where pigs spend part of the year outside and 
the rest indoors (seasonal housing) showed lower acidifi-
cation, and thereby fewer indirect GHG emissions, than 
indoor systems. Conversely, traditional or “hardy” pig 
breeds which spend their lives outdoors yearly produce 

higher eutrophication potentials than semi-outdoor systems 
(Rudolph et al. 2018).

3.3  Livestock diets

3.3.1  Supplements to inhibit greenhouse gas production

While the use of biotechnological interventions can be 
challenging on a practical basis, feed additive supplemen-
tation appears to be the most researched and therefore 
the most “ready-to-use” mitigation measure to mitigate 
enteric  CH4 emissions and/or  N2O emissions for rumi-
nants (Prathap et al. 2021). For instance, dietary nitrate 
and increased lipids included together could reduce enteric 
 CH4 emissions by 45% for finishing beef cattle (Duthie 
et al. 2018). This measure is achievable through the utili-
zation of by-product feed such as rapeseed cake (Duthie 
et al. 2018). Potential adverse effects such as toxicity and 
impaired animal performance can be avoided by feed-
ing low amounts of nitrate (Lee and Beauchemin. 2014). 
On the contrary, feeding nitrate to animals may increase 
N in excreta and therefore the trade-off between  CH4 
and  N2O emissions reductions requires further research 
(Beauchemin et al. 2020). Similarly, supplementing dairy 
cow diets with oilseed-based preparations (e.g., extruded 
linseed or calcium salts of palm or linseed oil) as 22 g oil 
 kg−1 DM showed a reduction of 10% of  CH4 emissions per 
kilogram of DM (Kliem et al. 2019). In a meta-analysis, 
Arndt et al. (2022) showed that feeding oils or fats versus 
oilseeds had comparable mitigation effects on total daily 
 CH4 production, with an average of 21% (ranging from 
12 to 35%). This specific oilseed-based dietary mitigation 
measure is commercially practical with no negative effect 
on DM intake or milk fatty acid concentration (Kliem et al. 
2019). However, it should be noted that feeding higher 
levels of oil supplements (≥50 g oil  kg−1 DM) can have 
a negative impact on ruminal and total tract organic mat-
ter and therefore neutral detergent fiber (NDF) digestion 
(Firkins and Eastridge 1994). Furthermore, using 2 g of 
liquorice extract for feeding animals (rich in prenylated 
isoflavonoids and particularly glabridin) might potentially 
improve the efficiency of N utilization and reduce  CH4 
production in the rumen (Ramos-Morales et al. 2018). 
In this context, Ramos-Morales et al. (2018) conducted 
experiments which showed a reduction of 77%  NH3 emis-
sions and 27%  CH4 emissions following the inclusion of 2 
g extract of liquorice for sheep diets. The mitigation effect 
was accompanied with an improvement in feed conversion 
efficiencies by ruminants which subsequently increased 
their productivity (e.g., kg average daily gains). The 
invention of feed composition for ruminants comprising 
bis esters of hederagenin or ivy sapogenins (saponins are 
naturally occurring compounds that are widely distributed 
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in all cells of legume plants) helped to mitigate ruminant 
emissions (Al Dulayymi et al. 2017). The synthetic mol-
ecule derives its name from its ability to form stable, soap-
like foams in aqueous solutions and constitutes a complex 
and chemically diverse group of compounds including gly-
coside. The hederagenin bis esters have a persistent effect 
against ciliate protozoa in the rumen, without affecting 
the bacterial microflora, and feeding ruminants with doses 
of 50 mg to 1 g per kg per feed demonstrates a mitiga-
tion potential of up to 23% for enteric  CH4 emissions and 
up to 16% for  NH3 emissions (Al Dulayymi et al 2017). 
This dietary mitigation measure also helped to improve 
milk production and ruminant growth performance was 
observed to be more efficient (Al Dulayymi et al. 2017). 
In this context, several studies with saponins reported 
reduced  CH4 production from ~6 to 27% by reducing the 
protozoa population (Goel and Makkar 2012).

Other effective supplements for reducing enteric  CH4 
emissions include concentrate supplementation with 
ground corn, essential oils, or acidic supplements (e.g., 
encapsulated fumaric acid) as well as certain plant sec-
ondary metabolites (e.g., grape marc; Prathap et al. 2021). 
Notably, a potential  CH4 inhibitor known as 3-nitrooxy-
propanol (3-NOP) is receiving much attention. 3-NOP has 
been shown to be effective in long-term studies with dairy 
and beef cattle (Melgar et al. 2020). 3-NOP decreases  CH4 
production by 30% (Dijkstra et al. 2018; Kebreab et al. 
2023). In general, the reduction of  CH4 emissions derived 
from enteric fermentation is within the large range of miti-
gation reported by UNEP (2021) at a global scale (i.e., 15 
to 45%). However, farmers should be selective regarding 
this feeding practice, as some of the feed additives might 
be expensive (e.g., propionate precursors) or have side 
effects such as reduced calorie intake (e.g., halogenated 
compounds; Smith et al. 2021).

3.3.2  Modifying feeding regimes

Replacing a moderate proportion of total mixed ration-based 
diets with freshly cut and delivered grass or grass grazed 
at pasture for dairy cows showed a reduction in  CH4 emis-
sions of up to 17% for the animals fed fresh cut grass and 
up to 39% for the grazing animals (Cameron et al. 2018). 
Within this mitigation measure, the costs of any longer-
term reductions in milk yields may be outweighed by the 
benefits of improved farm profitability and reduced GHG 
emissions (Cameron et al. 2018). High-sugar grasses are 
thought to provide a better balance of N and carbohydrates 
to rumen microbes, thereby improving N and feed efficiency 
(Soteriades et al. 2018). In this context, re-seeding conven-
tional permanent pastures (which occupy ~70% of UK-based 
agricultural land) with high-sugar grass varieties is seen as 
an attractive short-term measure for farmers by improving 

productivity, and reducing acidification and eutrophication 
impacts. However, it is important to note that primary data 
(e.g., digestibility and crude protein measurements as well 
as animal growth rates during grazing)–based assessments 
of high-sugar grass introduction suggest that the cultivar 
may produce more  N2O emissions and poorer animal per-
formance compared to other swards such as those including 
legumes (e.g., white clover; Trifolium repens) under clayey 
soil types and temperate climatic conditions (McAuliffe 
et al. 2018; Mcauliffe et al. 2020b).

Grazing of dairy cows has also been shown to be effec-
tive with respect to SOC sequestration (Wilkinson et al. 
2021). Pasture access benefits milk quality (i.e., milk pro-
duced on grass has higher levels of digestible protein as well 
as vitamin E and carotene; Wilkinson et al. 2021). Grazing 
dairy cows display behaviors including improved lying/rest-
ing times, lower levels of aggression, more normal estrous 
behaviors, and better synchronicity of behaviors compared 
to housed cows (Mee and Boyle 2020). Farmers are thereby 
encouraged to provide pasture access to dairy cows when-
ever weather conditions permit. Nevertheless, ruminant wel-
fare is complex and there are different schools of thought 
about benefits and risks related to year-round housing, but 
when managed appropriately, improved welfare through 
grassland access has been shown to improve productivity 
and therefore reduce GHG emissions via fewer  CH4 and 
 N2O emissions (Rivero and Lee 2022). It is also worth 
mentioning that improving welfare (e.g., reducing lameness 
occurrences, preventing liver fluke, reducing stocking den-
sities, and minimizing tuberculosis outbreaks) can actually 
marginally increase GHG emissions in certain livestock sys-
tems such as poultry while reducing water and soil pollution 
(Leinonen et al. 2014). In the case of ruminants, unintended 
consequences of improved animal welfare include reduced 
gross margins due to increased management costs (Rivero 
and Lee 2022). These complexities require further inves-
tigation to determine (a) whether the observed trade-offs 
can be balanced through mitigation measures and manage-
ment practices (e.g., cell-grazing for ruminants) or (b) if one 
aspect of sustainability (i.e., environmental benefits, animal 
welfare improvements, or increased profitability) should be 
prioritized over the others. To add to the aforementioned 
complexities, other studies have demonstrated that improved 
profitability via high-quality management practices (e.g., 
high levels of feed conversion ratios) can in fact improve 
environmental health and economic performance simultane-
ously in intensive pig production systems (McAuliffe et al. 
2017); despite this encouraging finding, implications for 
animal welfare require further exploration in the context of 
achieving net zero (see Section 3.4 for more information).

In terms of point (a) in the previous paragraph, feeding 
Ericaceous species (e.g., plants which thrive in low pH soils) 
to grazing sheep and red deer on heathlands is an effective 
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mitigation measure to mitigate GHG emissions (Pérez-Bar-
bería et al. 2020). Indeed, the mitigation measure balanced 
multiple trade-offs through improved cost-effectiveness, 
reduced the C footprint, and demonstrated biodiversity gains 
compared to other systems of animal production such as 
intensive farming (when animals are indoors, and fed on 
imported food and silage) (Gordon and Prins 2008). Eri-
caceous species also help to maintain traditional grazing 
culture and improve animal welfare (Pérez-Barbería et al. 
2020). On the other hand, introducing high concentrate 
(e.g., barley or maize based) diets fed to different breeds of 
beef cattle during the finishing period helped to reduce up 
to 45% of  CH4 emissions, while increasing feed efficiency 
and propionate (a main precursor of glucose for ruminants) 
production, thereby decreasing  CH4 production in the rumen 
(Snelling et al. 2019).

Nevertheless, under grazing systems, larger areas of pas-
ture may be needed to produce the same amount of through-
put (Wilkinson et al. 2021). In this context, diets for live-
stock could be formulated to reduce the total feed-related C 
footprint and reduce the proportion of human-edible feed 
in the total diet (Wilkinson and Garnsworthy 2017). For 
instance, dairy cow diets formulated to include high propor-
tions of by-product feeds such as dried distillers’ grains can 
support high levels of milk output and are environmentally 
attractive compared with those based on grazed pasture or 
silage with concentrates (Wilkinson and Garnsworthy 2017). 
By-product utilization contributes to a circular economy via 
waste avoidance and reduction of “empty” (i.e., agricultural 
produce which ends up in landfills, incinerators, or slightly 
less burdensome, recycling centers) GHG emissions.

3.4  Livestock health and genetic performance

Although highly complex in terms of sustainability trade-
offs, as introduced in Section 3.3, improving livestock 
health has been shown to have positive environmental and 
societal benefits in certain livestock systems; for instance, 
the reduction of GHG emissions arising from livestock pro-
duction can be delivered by reducing the maintenance of 
poorly performing animals through genetic selection (Llonch 
et al. 2017; McAuliffe et al. 2018). Improving health can 
lead to improvements in the parameters that ruminants’ 
emission intensities are sensitive to, e.g., maternal fertil-
ity, abortion rates, and cow mortality rates, while calf, ewe, 
and lamb mortality rates and growth rates, milk yields, and 
feed conversion rates are also important factors to improve 
(MacLeod and Moran 2017). Regarding C “credits,” the 
marginal cost for livestock health improvement was higher 
than −100 £  t−1  CO2-eq for cattle and lower than 50 £  t−1 
 CO2-eq for sheep production (MacLeod and Moran 2017). 
Similarly, performance recording technology showed live-
stock production’s potential to be C efficient, thus adhering 

to growing public demands on climate change and animal 
welfare simultaneously (Morgan-Davies et al. 2021). For 
instance, using performance recording on sheep farms in 
order to achieve higher genetic merit mitigated up to 18% of 
GHG emissions (3.5  CO2-eq kg  liveweight−1) and increased 
economic margins by £6  ewe−1, thereby ensuring enhanced 
food security and lower climate-related impacts; however, 
this management practice incurred 10% extra labor with 
ramifications for profit-loss margins (Morgan-Davies et al. 
2021). Moreover, future animal breeding schemes may 
include a wider range of traits linked to environmental 
emissions apart from production and health traits (Gill et al. 
2021). Wallace et al. (2019) reported that a heritable subset 
of the core rumen microbiome dictates dairy cow produc-
tivity and  CH4 emissions. As alluded to above, in theory, 
it should then be possible to select ruminants with specific 
rumen microbiomes suited to different production systems, 
leading to higher feed efficiency (e.g., through increased 
digestible energy) and lower  CH4 emissions. This is a nota-
ble finding as improvements to the biological performance 
of ruminants fall behind the performance of monogastrics 
which are easier to increase feed conversion efficiencies due 
to the absence of rumen microbial communities.

Considering livestock bedding material, straw is com-
monly used and often transported long distances from ara-
ble to livestock regions (Copeland and Turley 2008). This 
process is becoming increasingly unsustainable and uneco-
nomical as the demand and price for straw increase (Wonfor 
2017). Alternative bedding materials (for instance, coppice 
willow and miscanthus) cultivated directly on livestock 
farms could potentially avoid transport-related emissions 
and competition for use (Glithero et al. 2013). In this con-
text, the use of miscanthus bedding production on livestock 
farms and the substitution of fossil fuels with straw in elec-
tricity generation have been shown to provide environmen-
tal benefits (Yesufu et al. 2020). This mitigation measure 
is considered to be cost-effective and capable of reducing 
GHG emissions by ~9 million t  CO2-eq at a UK level and 
also minimizes both eutrophication and acidification burdens 
(Yesufu et al. 2020).

3.5  Horticultural systems on peatlands

Around 40% of UK peatlands have been drained for agricul-
tural use, namely horticultural cultivation, which has caused 
serious peat wastage and associated GHG emissions  (CO2 and 
 CH4; Dixon et al. 2014). While peatland drainage increases 
 CO2 loss into the atmosphere, natural peatlands are sources 
of  CH4 due to methanogenic activity under their prevalent 
waterlogged anoxic soil conditions. To address GHG emis-
sions and C losses, water tables should be raised (or lowered if 
applicable) to reduce GHG emissions from agricultural peat-
lands while simultaneously maintaining the current levels of 
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horticultural productivity (Musarika et al. 2017). For instance, 
increasing the water table to −40 cm presented a possible 
compromise to decrease peat oxidation and maintain romaine 
lettuce production (Matysek et al. 2022). Similarly, raising 
the water table from −50 to −30 cm in lowland fen peatland 
used for radish production reduced GHG emissions (i.e.,  CO2 
by 89% and  CH4 by 58%), while maintaining the same yield 
production (Musarika et al. 2017). Likewise, maintaining a 
high-water table in different horticultural peatlands helped to 
reduce the global warming potential by approximately 30% 
(Taft et al. 2018). However, it is important to bear in mind 
that this mitigation measure may be impractical to implement 
within current horticultural systems. For instance, raising the 
water table to within 15 cm of the soil surface would not be 
implemented while a crop was in place, as it would likely 
result in high crop mortality and thus be unsuitable for field 
trafficking. Instead, this intervention would probably need to 
be implemented between summer crops, possibly over quite 
short fallow periods (Taft et al. 2018). Optimizing the water 
table in agricultural peatlands contributes significantly to eco-
nomic development in many areas (Evans et al. 2021) and 
promotes food security (Taft et al. 2018).

3.6  Mixed farm systems and their role 
in sustainable agriculture

Integrated farming under horticultural and crop systems has 
demonstrated the capability to mitigate more than 100% of 
GHG emissions, while enhancing food health and promoting 
agricultural sustainability (Abdul-Salam et al. 2019). Inte-
grated farming involves cover crops, legumes, conservation 
tillage, reduced mineral fertilizer, pesticide and herbicide 
applications, and soil amendments to increase SOC con-
tent. However, since the relative financial performance of 
conventional farm systems is better than many low-carbon 
integrated farm systems, price premiums of up to 20% for 
integrated farming would help to enhance their economic 
performance to be comparable with conventional farming 
(FWI 2017; Abdul-Salam et al. 2019). In this way, consum-
ers are increasingly sourcing low-carbon produce and paying 
extra as a way of improving their food health and contributing 
to reductions in their C footprints (Abdul-Salam et al. 2019).

Under both croplands and grasslands, several practices 
could be implemented to maximize crop nutrient utilization 
and to minimize emissions to the environment. As an “envi-
ronmentally benign” material, applying green/food composts 
(characterized by lower N content, compared to food diges-
tate and slurry) reduced  N2O emissions by up to 54% while 
accumulating long-term soil organic N reserves and improv-
ing soil structure and nutrient composition (Nicholson et al. 
2017). Farmers are also advised to apply food-based diges-
tate, as a provider of renewable energy, in the spring where 
practically possible, or in autumn to an actively growing crop 

such as grass or oilseed rape (Nicholson et al. 2017). Under 
this management, the crop will take up available N from 
the soil which will not be lost via overwinter  NO3 leaching 
(Nicholson et al. 2017). Similarly, bandspreading is thought 
to be effective at reducing  NH3 emissions (up to ~70%) from 
slurry instead of surface broadcasting (Nicholson et al. 2017). 
Precision application (i.e., bandspreading) provides numer-
ous other advantages over broadcast applications: for exam-
ple, more accurate assessment of application rates, the abil-
ity to apply from tramlines, reduced odor and crop damage, 
and a cleaner sward can be achieved (Nicholson et al. 2017). 
However, the effectiveness of this technique is dependent on 
the prevailing soil conditions (Nicholson et al. 2017).

Within arable and livestock systems, when using the by-
products of whisky production to replace alternative feed 
ingredients (such as imported soya meal) for livestock, nota-
ble reductions of GHG emissions were shown (associated 
with land use changes, and to a lesser extent with enteric fer-
mentation, manure management, and the end use of manure 
and its potential to replace synthetic fertilizers) (Leinonen 
et al. 2018). As briefly discussed in Section 3.3, distillery by-
products could also be used as anaerobic digester feedstock 
to generate renewable energy (heat and electricity), though 
the mitigation potential as animal feed is lower than using 
it as human-edible ingredients (0.703 to 0.759 kg  CO2-eq 
 kg−1 DM of by-product used for human consumption, com-
pared to 0.101 to 1.219 kg  CO2-eq  kg−1 DM of by-product 
used for animal feed; Leinonen et al. 2018). When used as 
an organic fertilizer, digestate arising from the anaerobic 
digestion process is high in N and P, as well as C, thereby 
simultaneously accumulating SOC and reducing the need 
for synthetic fertilizers (Leinonen et al. 2018), which are a 
major source of agri-food related GHG emissions.

3.7  Offsetting greenhouse gas emissions 
on agricultural land

Agroforestry systems deliver environmental benefits through 
C uptake compared with grasslands or croplands without 
trees (Jordon et al. 2020). Agroforestry, including silvopas-
ture systems, shelterbelts, windbreaks, riparian buffer strips, 
hedges, wood pasture, forest grazing, orchards, woody bio-
fuel, and farm woodlands, is gaining considerable attention 
from the perspective of agricultural sustainability, particu-
larly in terms of net-zero ambitions globally. For instance, 
in terms of GHG mitigation and SOC sequestration, forest 
regeneration on sheep pasture with natural regeneration or 
forest plantation showed a mitigation potential of up to 85 
t  CO2-eq  ha−1 and 147 t  CO2-eq  ha−1, respectively, over 25 
years (O’Neill et al. 2020). Moreover, planting red alder 
trees into sheep-grazed pasture showed a  CO2 mitigation 
potential of 47.5 to 99 Mg C  ha−1, after 20 years, for differ-
ent types of red alder trees (Nworji 2017). Likewise, land use 
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change by either afforestation with species of broadleaf trees 
(planted at 800 or 1600 stems  ha−1), or reversion to rough 
grassland, showed both soil N and C accumulation increas-
ing SOC up to 46% and 334%, respectively, for 21 years 
(Baddeley et al. 2017). When pragmatically feasible, estab-
lishing hedgerows and field margins in arable landscapes and 
agroforestry systems could provide up to 63 t C  ha−1 (Dunn 
et al. 2021). The mitigation potential is comparable to the 
estimated 81.7 ± 28.8 t C  ha−1 for hedgerows in Belgium 
(Van Den Berge et al. 2021). Similarly, Crous-Duran et al. 
(2020) using modelling showed that introducing trees in ara-
ble systems allowed the sequestration of up to ~400 t C  ha−1 
in high tree-density agroforestry systems. Likewise, Poulton 
et al. (2018) analyzed rates of SOC increase in the treatments 
on 16 long-term experiments in the southeast UK. The latter 
study showed that the conversion from cropland to grassland 
or woodland enhanced SOC sequestration exceeding 4 per 
1000 SOC stocks per year in the case of woodlands and 
reaching 55% in the case of grasslands. More widely, under 
the European territory, agroforestry implementation in the 
priority areas (areas with the highest number of accumulated 
pressure), which made up 8.9% of total European farmland, 
would reduce between 1.4 and 43% of European agricultural 
GHG emissions, depending on the type of the agroforestry 
(Kay et al. 2019). In addition, several environmental impacts 
could be reduced under agroforestry systems due to microcli-
mate amelioration through the windbreak effect of the trees, 
the conservation of soil and water, and wildlife habitats as 
well as the forest productivity and sustainability through C 
uptake, thereby GHG offsetting contributing to cross-sector 
net-zero targets (Nworji 2017; Jordon et al. 2020).

It is worth noting that the viability of land use conver-
sion to agroforestry, without subsidies, depends on low 
farm performance, a strong likelihood of natural regenera-
tion, and a high carbon-market price. For instance, Burgess 
and Rosati (2018) confirmed that silvopastoral systems are 
not financially profitable (compared to silvoarable systems) 
but they provide the greatest societal benefit if environmen-
tal externalities are included. Accordingly, imposing, e.g., 
carbon payments or penalties for nutrient or soil loss pollu-
tion, would make agroforestry a more financially profitable 
opportunity for sustainable food production and security 
(Kay et al. 2019). In other words, financial aid for wood-
land establishment, a strategy being deployed in the UK by 
the “Woodland Trust,” makes planting trees to sequester 
C financially viable (O’Neill et al 2020). However, other 
studies, such as Crous-Duran et al. (2020), showed that 
introducing trees in different farming systems such as ara-
ble and pasture, as a solution for additional environmental 
benefits, maintained similar levels of productivity. Affor-
estation mitigation measures provide economic benefits in 
terms of monetary value (e.g., harvesting wood for paper 
pulp or heating fuel which would offset fossil fuel depletion 

and associated GHG emissions), job creation, and financial 
income for rural economies as well as contributing to the 
circular economy if managed appropriately (Dunn et al. 
2021). Many of the “tree outputs” have different established 
markets such as timber, food, energy, recreation, and non-
timber forest products (e.g., foliage, biochar, and Christmas 
trees), which offer a developing or niche opportunity for 
farm enterprises to enhance ecosystem services (Pagella and 
Whistance 2019). Decision support tools should be offered 
at the planning stage of farm woodland schemes to aid farm-
ers in tree species selection and assessment of benefits and 
trade-offs (Wiik et al. 2019). It is also important to bear in 
mind that the rate of SOC increase slows as the new equi-
librium value (i.e., reaching SOC saturation) is approached 
and that increases are reversed if the modified management 
practices are not continued (Smith 2014).

Widespread adoption, however, would have a negative 
impact on global food security, e.g., converting agricultural 
land to forest or grassland (Poulton et al. 2018). Conver-
sion to grasslands and woodlands could be convenient in 
limited situations where soils are either of low productivity 
or are fragile and prone to erosion, to ensure food security 
(Albanito et al. 2016). Moreover, afforestation should be 
accompanied by a shift in diet away from meat and dairy 
products. This change is necessary because without it, it 
would be necessary to import additional meat and dairy 
products from overseas (Dunn et al. 2021).

3.8  Bioenergy production

The CCC identified that bioenergy coupled with carbon cap-
ture and storage (BECCS) could deliver a significant reduction 
of up to 53 Mt  CO2-eq by 2050 (BEIS 2021). Indeed, bioen-
ergy crops help mitigate climate change through displacing 
fossil fuel energy generation while removing  CO2 from the 
atmosphere and storing it in soils. This is the case with wil-
low and miscanthus which both offer biomass production and 
higher SOC sequestration rates (with up to 12% increase in soil 
depths of 0–0.3 m) when planted in arable soils (Gregory et al. 
2018). Robertson et al. (2017) estimated that the miscanthus-
derived soil C accumulated a rate of 860 kg C  ha−1  year−1 over 
the top 30 cm. Therefore, miscanthus cropping could be attrib-
uted as a  CO2-sink related to an additional credit from soil C 
sequestration in the soil during the cultivation period, as con-
firmed in the Felten et al. (2013) study in Western Germany. 
Harris et al. (2017) showed that the conversion of grassland to 
short rotation coppice bioenergy willow converted the system 
from a net C source of 119 g C  m−2  year−1 to a net sink, −620 
g C  m−2  year−1.

However, in the UK, conversion of grassland to bioen-
ergy cropping systems represents one of the most significant 
potential land use transitions, as grasslands are a considerable 
part of the UK landscape (4–5  106 ha; Defra et al. 2007) and 
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management of grasslands can vary widely in the UK, particu-
larly with respect to fertilizer input and grazing strategies (Har-
ris et al. 2017). As a consequence, it is desirable that bioenergy 
crops are concentrated on less-productive “marginal” land to 
minimize conflict between food and bioenergy production on 
higher-quality soils (McCalmont et al. 2017).

Lastly, poultry litter has been shown to perform better 
than miscanthus for most of the impacts. In this sense, gasi-
fication of poultry litter to produce electricity and heat gen-
eration in the UK could save 1.7 Mt  CO2-eq  year−1, equiva-
lent to around 0.4% of UK’s GHG emissions (Jeswani et al. 
2019). However, owing to high capital costs, the unsubsi-
dized cost of generating heat and electricity from poultry 
litter is similar to that of natural gas heat and power but 
significantly cheaper than that from other fossil fuel alterna-
tives within an abatement cost of £34  t−1  CO2-eq. This signi-
fies that animal waste (by-product) management is a critical 
research stream in the context of agriculture’s contribution 
to a net-zero economy.

4  Limitations and critical gaps for future 
research

4.1  Limitations

Our findings on GHG mitigation measures applied in the UK 
are applicable to broader geographies under similar climatic 
conditions. Despite adhering to a standard operating proce-
dure for systematic reviews, our synthesis of results did not 
apply streamlined effect size predictions of the benefits and 
risks surrounding individual (or combined) GHG mitigation 
measures as the data extracted was not consistent in terms 
of agricultural systems, mitigation measures, and edaphocli-
matic conditions in the UK (Jebari et al. 2023); as a result, 
this made statistical analyses of these reviewed measures’ 
potential to contribute to the UK’s net-zero ambitions infea-
sible. Likewise, emission reductions were provided per area 
or per kilogram of product. However, emission reductions 
per area may imply a caveat associated with reductions in 
productivity. Further, although the resulting dataset provides 
novel information to guide future research in the context of 
agriculture’s net-zero achievements, the results should be 
interpreted with caution as they could potentially be mis-
leading within the study’s geographic boundary due to the 
low UK-specific literature sample size (n = 52). Despite 
this limitation, the resultant dataset (Jebari et al. 2023) pro-
vides a simple, yet comprehensive progress to communi-
cate cutting-edge sustainability research with the farming 
community, thereby enabling qualitative analyses to guide 
future scientific efforts which are economically (e.g., capital 
investment requirements) and socially feasible.

4.2  Critical gaps for future research

As touched upon throughout the examination of literature, 
knowledge gaps were highlighted in our findings related to 
the implications of various mitigation opportunities for the 
UK’s agricultural systems. While the environmental impacts 
of different mitigation measures have been investigated 
extensively, other impacts remain poorly understood. For 
instance, barriers on the adoption of the mitigation measures 
for the farmer, in terms of ease of maintenance or installa-
tion and operational costs, have been overlooked by 49% of 
the reviewed literature (see dataset; Jebari et al. (2023)). In 
this context, information on the attitudes of farmers towards 
the different management practices is needed (Collins et al. 
2016), as farmers make the management decisions for most 
agricultural land in the UK (Harris and Ratnieks 2022). 
Engaging farmers on the issue of climate change mitiga-
tion (e.g., via participatory extension programs, surveys, and 
workshops, where farmers are allowed to share their feed-
back) is one option to address this current important knowl-
edge gap (Knook et al. 2020). This bridge between scientists 
and farmers has already been established as part of another 
complementary, collaborative, and nationwide research 
stream which aims to identify which mitigation measures 
should be explored more rigorously from the agricultural 
community’s perspective (see Section 4.1).

Moreover, the energy implications of the mitigation 
measures (i.e., whether the mitigation measure implies 
energy consumption reductions or increases) were not con-
sidered in 52% of the studies reviewed herein, even though 
entire food supply chains are major energy users and con-
tributors to climate change (Rosa et al. 2021). Similarly, 
food security provision was overlooked in 51% of the studies 
reviewed, despite the potential negative trade-offs between 
food security and climate mitigation (Fujimori et al. 2019). 
Particularly, the import requirement induced by the mitiga-
tion measure was stated in only 15% of the retained studies.

Although the financial viability (in monetary and/or pro-
ductivity terms) of the mitigation measures was considered in 
most of the studies reviewed (> 77% of studies), the marginal 
abatement cost (i.e., the average cost of reducing 1 ton of  CO2 
equivalent) was rarely considered. The latter was not men-
tioned in 90.6% of the studies, which could be considered a 
major knowledge gap for future research. The cost-effective-
ness of mitigation measures can change in response to factors 
such as commodity prices and the indirect effects of non-
GHG policy (MacLeod et al. 2010). Even though prices and/
or costs are fluctuating with time (Tang et al. 2021), marginal 
abatement cost information of potential mitigation measures 
has been shown to help policymakers identify the most recent 
cost-effective GHG mitigation options (Eory et al. 2018). As 
a consequence, the generation of accurate information on the 
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cost-effectiveness of the mitigation measures is needed for 
effective government policies.

5  Conclusions

We synthesized existing evidence for several agricultural man-
agement practices and technologies, which can be deployed 
on farms, in order to help mitigate climate change. In many 
cases, the mitigation measures provided co-benefits for farm-
ers, including improving farm productivity and diversifying 
farm income through energy generation. Well-implemented 
measures also result in environmental co-benefits in addi-
tion to mitigating climate change, including biodiversity, soil 
health, and other ecosystem services related to human health 
and animal welfare. However, it is also important to look at the 
sustainability from the farmers’ perspective. Uneconomic prac-
tices for farmers (e.g., bioenergy industrial plants, agroforestry 
establishment) could be potentially overcome by government 
changes in regulations and subsidies to ensure greater finan-
cial viability by compensating for initial high capital costs. 
We have synthesized the evidence base within existing litera-
ture (Jebari et al. 2023), primarily focusing on the relevance 
to the UK’s GHG strategies up to 2050 and the identification 
of opportunities and risks which require further attention. Our 
open-access dataset (Jebari et al. 2023) can inform scientists 
and policymakers on state-of-the-art GHG-related studies and 
guide funding bodies to target areas, which need urgent atten-
tion. Finally, net-zero achievement and relevant government 
policies need to be examined more holistically (e.g., account-
ing for unintended consequences such as farmers’ well-being 
and animal welfare) in the context of business resilience and 
broad sustainability. This is particularly pertinent to food secu-
rity as there is an ever-increasing population, which only the 
agri-food sector as a whole can sustain.
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