46

BIOSTATISTICAL TOOLS FOR
PLANT BREEDING IN THE

GENOMICS ERA

L Gutierrez', A Borges', G Quero?, A Gonzalez-Reymundez',

| Berro', B Lado'3?, A Castro*

SUMMARY

Since the advent of agriculture, plant
breeding has successfully improved plants
for human benefit. Modern plant breeding
activities consist in evaluating the genetic
merit of lines discerning genetic from
environment and noise components. To do
so, modern plant breeding relies on the
genetics foundations derived from Mendel’s
work and statistical tools (or biometry)
generated afterwards. Plant breeding
activities could be grouped in three
categories: traditional, marker assisted
(MAS), and genomic selection (GS).
Traditional plant breeding uses either per se
phenotypic information, or information from
relatives to evaluate the genetic value. MAS
on the other hand, involves the identification
of markers linked to genes or quantitative
traits loci (QTL) of relevant traits, and then
selecting individuals based on their marker
scores. Finally, GS involves the prediction
of the genetic merit of individuals based on
their marker scores and a statistical model.
All of the three strategies require the
evaluation of large number of individuals
creating massive amounts of data that needs
proper analyses. Our objective was to
present some biostatistical strategies that
are successfully being used in plant breeding
programs. First, we used novel simulation

approaches to compare the use of experi-
mental design and spatial corrections in the
context of genotypic evaluations. Second, we
proposed some strategies for modeling and
interpreting QTL by environment interaction
for QTL mapping. Third, we compared models
for Genome-wide Association Mapping
(GWAS) using different strategies for
accounting for population structure, and we
evaluated the performance of models for
mapping non-normal traits. Finally, we
compared and evaluated strategies for
implementing GS in national breeding
programs. Statistics has therefore become
a key component in plant breeding activities.
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INTRODUCTION

Since the advent of agriculture, plant
breeding has successfully improved plants
for human benefit (Allard 1960, Fehr 1984,
Hallauer and Miranda Filho 1988, Duvick et
al., 2004). Modern plant breeding activities
consist in evaluating the genetic merit of lines
discerning genetic from environment and
noise components. To do so, modern plant
breeding relies on the genetics foundations
derived from Mendel’'s work, and statistical
tools (or biometry) generated afterwards
(Sprague and Dudley, 1988, Lamkey and Lee,
2006). Plant breeding activities could be
grouped in three categories: traditional,
marker assisted (MAS; Tanksley, 1983), and
genomic selection (GS; Meuwissen et al.,
2001). Traditional plant breeding uses either
per se phenotypic information, or information
from relatives to evaluate the genetic value
(Fehr, 1987, Bernardo, 2010). MAS on the
other hand, involves the identification of
markers linked to genes or quantitative traits
loci (QTL) of relevant traits, and then selecting
individuals based on their marker scores
(Tanksley 1993, Hospital and Charcosset
1997). Finally, GS, involves the prediction of
the genetic merit of individuals based on their
marker scores and a statistical model
(Meuwissen et al., 200, de los Campos,
2012). All of the three strategies require the
evaluation of large number of individuals
creating massive amounts of data that needs
proper analyses.

A MAS program requires the identification
of genes or genomic regions associated to
the traits of interest. There are several
strategies to identify quantitative trait loci
(QTL) of relevant traits including bi-parental
population or traditional QTL mapping (Hayes,
1993) and Genome-wide Association Mapping
(GWAS; Jannink et al., 2001). Traditional
QTL Mapping requires first the construction
of balanced populations with known
recombination history. Later, a statistical
association between a molecular marker and
the trait of interest is sought through linkage
disequilibrium using either linear regression
models (Haley and Knott, 1992) or mixture
distributions (Lander and Botstein, 1989).
Since all the recombination occurred within

the limits of the experiment, the linkage
disequilibrium is expected to be caused by
physical linkage of the molecular marker and
the QTL, and therefore the location of the QTL
can be inferred. The GWAS is also based on
a statistical association between the mole-
cular marker and the trait of interest. However,
since diverse populations without a known
recombination history are used, the cause
of linkage disequilibrium could be physical
linkage and other causes such as selection,
genetic drift, mutation, admixture and
population structure among other evolutionary
forces (Jannink et al., 2001). Therefore,
controlling for population structure is crucial
in GWAS. Advantages of GWAS, as
compared to bi-parental QTL mapping
include: assessment of genetically diverse
germplasm stocks, higher resolution
mapping, effective use of historical data, and
immediate applicability to cultivar
development because the genetic background
in which QTL are estimated is directly
relevant for plant breeding (Kraakman et al.,
2004, Dekkers and Hospital, 2002, Yu and
Buckler, 2006). This strategy has
successfully been used in plants (Kraakman
et al., 2004, 2006, Hayes and Szlics, 2006,
Stracke et al., 2009, Waugh et al,. 2009, Roy
et al., 2010, Bradbury et al., 2011, von
Zitzewitz et al., 2011, Gutierrez et al., 2011,
Locatelli et al., 2013).

One of the main limitations of QTL studies
is that not all of the QTL can successfully be
identified mainly due to population sizes and
the number and size of the QTL effects
(Beavis effect, Beavis, 1998). Furthermore,
the QTL that are identified have small effect
and explain a small portion of the total
variation (missing heritability, Manolio et al.,
2009). These make it challenging to actually
use the QTL results in breeding programs.
Some alternatives include GS that use all the
markers to predict the performance of the
individuals skipping the significance test for
any marker (Meuwissen et al., 2001). The
principle consists in developing a prediction
model based on a large population thoroughly
studied for both molecular and phenotypic
information (i.e. the training population) and
using the model to predict phenotypic per-
formance in instances where phenotyping is
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not suitable (i.e. early generation testing, off-
season nurseries and others; Heffner et al.,
2009). Several models have been developed
for GS (Meuwissen et al., 2001, Gianola et
al., 2006, Bernardo and Yu, 2007, Lorenzana
and Bernardo, 2009, de los Campos et al.,
2012): based on mixed models (G-BLUP),
bayesian models (Bayesian LASSO,
Bayesian-RR, Bayes A, B, C and others) and
semi-parametric models (RKHS, PNN, etc.).

Quantitative traits are affected by the
environment making phenotyping crucial in
any plant breeding activity. This creates two
challenges. First, field trials and experimen-
tal designs for large number of genotypes
should be carefully chosen to reduce spatial
heterogeneity and experimental error and to
increase heritability (Cullis et al.,. 1998).
Second, Genotype by Environment
Interaction (GEI) is widespread in plants, and
affects especially quantitative traits that are
of main importance for plant breeding
(Mathews et al., 2008). Mixed models have
been used for modeling GEI and QTL by
Environment Interaction (QEI; Piepho, 2000,
Verbyla et al., 2003, Malosetti et al., 2004,
van Eeuwijk et al., 2005, Boer et al., 2007,
Mathews et al., 2008).

Our objective was to present some
biostatistical strategies that are successfully
being used in plant breeding programs. First,
we used novel simulation approaches to com-
pare the use of experimental design and
spatial corrections in the context of
genotypic evaluations of large number of
genotypes. Second, we proposed some
strategies for modeling and interpreting QEI
for both traditional QTL mapping and GWAS.
Third, we compared models for GWAS using
different strategies for accounting for
population structure, and we evaluated the
performance of models for mapping non-nor-
mal variables. Finally, we compared and
evaluated strategies for implementing GS in
national breeding programs.

EXPERIMENTAL DESIGN AND
SPATIAL CORRECTION

Materials and Methods

Yield data from 15, 50 or 200 genotypes
was simulated using real spatial variability
and genotypic effects randomized with three
experimental designs: completely
randomized design (CRD), randomized com-
plete block design (RCBD), and incomplete
block design (IB-a). Afterwards, each
simulation was analyzed using models with
different levels of spatial correction: no spatial
correction model, spatially correlated error
model with one-dimensional auto-regressive
process [AR(1)] and two-dimensional auto-
regressive process [AR(1)xAR(1)]. Models
were compared by goodness of fit, accuracy,
recovery of superior genotypes and
percentage of rejection of the null hypothesis
in the ANOVA.

Results and Discussion

Spatial variation in environmental and soil
factors commonly occurs in field conditions
(Grondona et al., 1996, Legendre, 1993).
Therefore using experimental designs that
incorporate local control is especially
beneficial in experiments with large number
of treatments (Legendre et al., 2004,
Gongalves et al., 2010, Masood et al., 2008).
We found that experimental designs with
larger local control performed better (see
Borges et al., 2014). For moderate to small
experiment size, the I1B-a obtained the best
results in fit, precision and recovery of supe-
rior genotypes. In this situation, the CRD
showed the worst performance for almost all
statistics, with very low efficiency, reaching
only 1.49%, 19.1% and 10% (15, 50 and 200
genotypes respectively) of rejection of the null
hypothesis.

Design deficiencies to control spatial
variability could be somewhat compensated
by using a model that includes spatial
variation (Casler and Undersander, 2000,
Qiao et al., 2000). In most of the situations
models that include spatial correlation are
more efficient (Brownie et al., 1993,
Kravchenko et al., 2006, Mallarino et al.,
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2000). We found that modeling spatial
heterogeneity in our study improved design
performances. The models that included
spatial correlation were generally better than
those that did not in terms of model fitness.
This improvement was clearer in the cases
of the CRD and RCBD than in the IB-a.
However, modeling spatial heterogeneity was
not enough in the CRD design.

Some reports argue that spatial methods
of analysis provide more accurate and preci-
se estimates of genotypic effects than either
complete or incomplete blocks analysis
(Cullis et al., 1998, Cullis and Gleeson,
1991). However, we observed that the
improvements achieved with the design were
greater than those obtained with the
inclusion of spatial correction in the analysis
models. Therefore, spatial modelling aid but
does not substitute experimental design.

QTL BY ENVIRONMENT
INTERACTION FOR ABIOTIC
STRESS

Materials and Methods

An inter-specific population of
recombinant inbred lines (RIL) was used to
identify QTL associated to abiotic stress.

qS3

Pozsitive allele
provided by L. burtii

. CONTROL PEG
Pozzitive allele

provided by L. japonicus

Briefly, RIL from the cross between Lotus
japonicus Gifu and L. burtii were genotyped
with molecular markers that cover all the
linkage groups and phenotyped in hydroponic
conditions at three stress-conditions: ionic-
stress, osmotic-stress, and control. A multi-
QEI was conducted using mixed models on
shoot, root, and total relative growth to
identify stress-specific QTL. For more details,
see Quero et al. (2014).

Results and Discussion

Plants phenotypic expression is the result
of an interaction between the genome and
the environmental conditions (Quero et al.
2014). However, efforts in genomic analysis
have not been followed by proper
understanding of the phenotype, creating
what is called as phenotype gap (Miflin,
2000, Verslues et al., 2006). Quantitative
traits are affected by GEI (Mathews et al.,
2008) and therefore modeling GEI and QEI
provides a more natural interpretation of GEI
(Piepho, 2000, Verbyla et al,. 2003, Malosetti
et al., 2004, van Eeuwijk et al., 2005, Boer
etal., 2007, Mathews et al., 2008). By using
mixed models for QEI analysis, we
demonstrated that RIL from Lotus have
different responses to ionic and osmotic
stresses, and that we could map genomic

qS5

CONTROL PEG NaCl

Figure 1. Magnitude of QTL effect in stress environments for the relative growth rate of the shoot
of a Lotus japonicus_L. burttii RIL population where the length of the bar on the y-axis
indicates the magnitude of the effect. Modified from Quero et al., 2014.
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regions associated to each response (Figu-
re 1; Quero et al., 2014). Furthermore, the
favorable allele for osmotic stress on
Chromosome-3 was provided by L. burtii,
while the favorable allele for ionic stress was
provided by L. japonicus (Figure 1; Quero et
al., 2014). We showed how QEI strategies
could be implemented to get a better
understanding of the GEI and to better
understand the phenotype.

GWAS MODELS FOR POPULATION
STRUCTURE

Materials and Methods

We studied the association between five
malting quality traits and 3072 single
nucleotide polymorphisms (SNPs) from the
barley oligonucleotide pool assay (BOPA) 1
and 2, assayed in advanced inbred lines from
the Oregon State University breeding program
from three germplasm arrays (CAP |, CAP I,
and CAP lll). We compared 16 models to
account for population structure that
included all the combinations of population
control (i.e. principal component, non-metric

multidimensional scaling, population
structure, and no-control) with different
kinship estimation methods (i.e. EMMA,
TASSEL, SPAGeDI, and none). For more
details, see Gutierrez et al., 2011.

Results and Discussion

Population structure and genetic
relatedness are one of the main causes of
spurious association in GWAS studies
(Jannink et al., 2001, Yu et al., 2006, Cappa
etal., 2013). However, having a good control
for population structure is not straightforward.
Several strategies have been proposed for
controlling population structure including
using Bayesian inferred population structure
(Pritchard et al., 2000); kinship relationship
matrix (Parisseaux and Bernardo, 2004);
using both population structure and kinship
(Yu et al., 2006); using other multivariate
approaches to account for population
structure like principal component analysis
(Patterson et al., 2006, Price et al., 2006) or
non-metric multi-dimensional scaling (Zhu
and Yu, 2009); or using genome-wide markers
(Bernardo, 2013). We found that the best

cdf
1 1 1

ME-CO

0.00 0.02 0.04 0.06 0.08 0.10

0.00 002 0.04 006 008 01000 002 004 006 008 01000 002 0.04 0.06 0.08 0.10

p-value

Figure 2. Cumulative distribution function (cdf) of p-values in genome-wide scans for a barley
array for malt extract in two environments (ME-PE and ME-CO) and wort . glucan in
one environment (BG-CO). The different curves correspond to different models
compared: Naive, marker regression without correction for population structure; Q,
posterior probabilities matrix inferred from software STRUCTURE (Pritchard et al.,
2000); P, fixed-effects matrix from principal component analysis; M, fixed-effects matrix
from nonmetric multidimensional scaling; K, mixed models using kinship matrix as
implemented by efficient mixed model association (EMMA [Kang et al., 2008]); QK,
mixed models with Q matrix as fixed effects and kinship matrix as random effects;
PK.E, mixed models with P matrix as fixed effects and K matrix as random effects; and
MK, mixed models with M matrix as fixed effects and K matrix as random effects.

Modified from Gutierrez et al., 2011.
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model was population, trait, and environment
dependent (Figure 2; Gutierrez et al., 2011).
However, all of the mixed models recover the
QTL of large effect (Gutierrez et al., 2011,
Gutierrez et al., 2012).

GWAS MODELS FOR NON-
GAUSSIAN DATA

Materials and Methods

Five methods for GWAS for ordinal varia-
bles including generalized linear models and
transformations were compared in terms of
their relative efficacy in QTL detection and
estimation. Simulations were conducted for
a wide range of population sizes, number of
QTL, and heritabilities. We used both real
genotypic data from a barley population, and
de novo simulated data. Phenotypic values
for ordinal variables were simulated according
to different genetic models and QTL were
recovered using different GWAS models.
Power, false discovery rate, and bias in QTL
effect estimation were compared.

Results and Discussion

Because GWAS models are variations of
the linear mixed model, they assume

normality of residuals (Henderson, 1984).
When this assumption does not hold,
inference on QTL position and effects could
be negatively affected, causing a bias in the
QTL estimated effect, out-of range
predictions, or inaccurate hypothesis tests
results (Casella and Berger, 1990, Wu et al.,
2010). However, some of the relevant traits
being mapped are not normally distributed
(i.e. disease resistance, water deficit
resistance, and grain quality, which are
ordinal variables). Some strategies have been
implemented for mapping non-normal traits
including the use of normal error models in
balanced populations (Visscher et al., 1996,
Rebai et al., 1997) and generalized linear
models in balanced (Spyrides-Cunha et al.,
2000, Diao and Lin, 2006) and GWAS
populations (lwata et al., 2009). We
compared the use of five different methods
for dealing with non-normal error data
including general linear models (i.e. no-
transformation, squared-root transformation,
and logarithmic transformation) and
generalized linear models (i.e. probit and logit
regression). Under a wide range of population
sizes, number of QTL, and heritabilities, no
differences in power and false positives rate
were detected across methods while similar
bias were obtained for all methods (Figure
3). This suggests that the choice of the

Power FDR Bias
q=10, h2=0.5 q=10, h2=0.5 q=10, h2=0.5
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Figure 3. Power and FDR of QTL detection and bias of QTL effect for simulated genotypic set
evaluated with five different methods: WT (simple linear regression without
transformation), ST (simple linear regression on square root transformed data), LT
(simple linear regression on logarithm transformed data), CP (cumulative simple
regression with probit link) and CL (cumulative simple regression with logit link).
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method for dealing with ordinal variables does
not have a major impact on GWAS results.

GS IMPLEMENTATION IN WHEAT

Materials and Methods

A total of 1044 advanced inbred lines from
the National Wheat Breeding Program
(NWBP) were used to train GS models.
Genotyping by sequencing (GBS; Elshire et
al., 2011 modified by Poland and Rife, 2012
for wheat) was used with the Tassel pipeline
(Glaubitz et al., 2014) as in Lado et al. (2013)
to obtain 81,999 filtered SNP. Multi-
environment trials were used for phenotypic
information; the lines were evaluated in
multiple years and locations in Uruguay.
Additive-Main Interaction Models (AMMI;
Gauch, 1992), GGE biplots (Yan, 2000), and
correlations across environments were used
to establish mega-environments. Mixed
models were used to estimate Breeding
Values of the lines and model performance
was evaluated with the prediction accuracy.
We compared prediction accuracy within and
among mega-environments, as well as the
prediction accuracy modeling the GEI (Lado
et al.,, 2014). Additionally, we compared
strategies to establish the training population.

Results and Discussion

Several strategies have been proposed to
handle GEl in plant breeding context, to ig-
nore, to avoid, and to exploit it (Bernardo,
2010). Which strategy to follow will depend
entirely on the breeding objectives and the
targeted environments for the breeding
program. However, understanding the nature
of the GEl is crucial in order to make informed
decisions. Multiplicative models were initially
used to study GEI, and AMMI models
(Gauch, 1992) as well as GGE models (Yan,
2000) have been widely used. Mixed models,
on the other hand, provide a natural way to
model the correlation across environments
due to GEI (Malosetti et al., 2013, Cooper et
al., 2014). Since genomic prediction tools
come from systems where GEI is not an
important issue, little attention has been paid
into incorporating GEIl into prediction models.

However, Burgueio et al. (2012) used Mega-
environments to make within-mega-
environment predictions, while Heslot et al.
(2014) used environmental co-variables to
improve predictions. We used a large
population of advanced inbred lines from the
INIA-Uruguay Wheat National Breeding
Program combined with extensive genotyping
and phenotyping. A set of meteorological data
from environments within the range of
targeted environments for the Wheat National
Breeding Program was used. We found that
modeling GEI data produce higher prediction
accuracy than using average data (Lado et
al., 2014). Additionally, modeling within
mega-environments was beneficial as long as
population sizes were maintained (Lado et
al., 2014). Constructing the training
population with a larger population size, even
at the expense of genetic relatedness, was
more beneficial than using fewer and more
related individuals.

CONCLUSIONS

Modern plant breeding requires the use
of large data sets combining the information
from hundreds or thousands of individuals
evaluated in multiple environments and
screened for thousands of molecular
markers. Managing these kind of data could
therefore be challenging. But more
importantly, exploiting this information to
advance breeding cycles and produce better
cultivars requires the intense use of
biostatistical tools and asking the right
questions. We showed some examples
where biostatistical methods aid in the
analysis and interpretation of the results to
advance genetic gain. Statistics has
therefore become a key component in plant
breeding activities.
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