21. EVALUACIÓN DE CULTIVARES RESISTENTES A LAS IMIDAZOLINONAS EN ENSAYOS DE FAJAS

F. Molina¹, C. Marchesi²

PALABRAS CLAVE: adaptación, germoplasma elite, rendimiento.

INTRODUCCIÓN

Una de las etapas más importantes en el desarrollo de variedades es la evaluación final de los materiales. Paralelamente a los ensayos de evaluación final en INIA Treinta v Tres (Paso de la Laguna), se instalaron ensavos en fajas en diferentes localidades. Esta información en conjunto con los ensavos de la Red de Evaluación de Cultivares es relevante para identificar los mejores materiales y observar el comportamiento en un rango más amplio de ambientes. Por otro lado, en la Unidad Experimental Paso de la Laguna, los suelos tienen una elevada intensidad de uso. Esto determina, en ocasiones, que el potencial de los cultivares esté limitado por dicho factor. Los cultivares más destacados de estos ensayos en conjunto con la información histórica del programa son determinantes sobre qué cultivares avanzan a la etapa de multiplicación para ser validados a escala comercial, previo a su registro.

MATERIALES Y MÉTODOS

En la zafra 2020-2021 se instalaron ensayos IMI (imidazolinonas) en fajas en cuatro localidades (Séptima baja en Treinta y Tres, 18 de Julio en Rocha, Laguna Merín en Rio Branco, y Paso Farías, Artigas) abarcando un espectro amplio y diverso de suelos, clima y manejos. En las diferentes localidades, la siembra se realizó sobre suelos con laboreo anticipado de verano y movido en primavera previo a la siembra. A continuación, se presentan los datos más relevantes de la instalación y manejo de las fajas (Cuadro 1). En todos los casos, los cultivos en las fajas fueron manejadas por los productores igual que en sus chacras comerciales.

Se sembraron 10 parcelas de 3 metros de ancho por 10 metros de largo con 3 repeticiones en cada localidad. La cosecha de parcelas se realizó con una cosechadora automotriz (Fotón). Luego de la cosecha se procesaron

Cuadro 1. Manejo de los ensayos por localidad.

	Paso Farías- Artigas	Laguna Merin- RB	Séptima- TyT	18 de Julio- Rocha
Antecesor	Retorno sin pradera	Año intermedio	Retorno de 4 años de pradera	Retorno de 2 años
Siembra	30 de set.	13 de oct.	26 de set.	25 de set.
Fertilización Basal	6 kg/ha de N + 30 kg/ha de P_2O_5 + 108 kg/ha de K_2O	65 kg/ha de P ₂ O ₅ + 60 kg/ha de K ₂ O	5 kg/ha de N + 25 kg/ha de P_2O_5 + 73 kg/ha de K_2O	14,4 kg/ha de N + 62 kg/ha de P ₂ O ₅ + 120 kg/ha de K ₂ O
Macollaje	44 kg/ha de N	69 kg/ha de N	78 kg/ha de N	92 kg/ha de N
Primordio	32 kg/ha de N	23 kg/ha de N	28 kg/ha de N	41 kg/ha de N
Fungicida	0	Si	0	Si

¹ Federico Molina, PhD. INIA. Programa Nacional de Investigación en Producción de Arroz.

² Claudia Marchesi, PhD. INIA. Programa Nacional de Investigación en Producción de Arroz.

las muestras de los diferentes materiales para determinar calidad molinera.

Los ensayos se analizaron estadísticamente de forma conjunta y en el caso en que se detectó interacción localidad por cultivar, se realizó el análisis individual por localidad (ensayo).

Cultivares: Se incluyeron 8 materiales de los cuales 2 son *japónica tropical* (CL1339 y CL1092) y 6 de tipo *índica* CL 1294, CL1202, CL1289, CL1119, CL1493 y 7009FP. De forma adicional se incluyeron a Guri INTA CL y Memby Pora como testigos varietales CL. Se utilizó una densidad equivalente a 130 kg/ha de semillas (corregidos por peso de 1.000 granos y % de germinación).

RESULTADOS DE LA INVESTIGACIÓN

La productividad media de los ensayos fue muy alta pero diferente significativamente entre localidades. El rendimiento medio en Treinta y Tres fue 12,4 t/ha mientras que en Rocha fue 12,7 t/ha, no siendo diferentes estadísticamente. Mientras que en Río Branco el rendimiento fue 11 t/ha y en Artigas 9,6 t/ha. Estas dos últimas localidades difirieron entre sí y con Treinta y Tres y Rocha. Se detectó interacción cultivar por localidad, por lo

que el rendimiento se presenta por localidad (Cuadro 2).

Tomando como testigo comercial a Gurí INTA CL en cada localidad su rendimiento en promedio estuvo por debajo de varios cultivares, aunque con valores absolutos muy altos. Se destacan algunos cultivares, como es el caso de CL1202. rindiendo más que Gurí INTA CL en todas las localidades, con un rendimiento máximo de 14.575 kg/ha en Rocha. El cultivar CL1493 rindió 5% más que Gurí INTA CL en promedio, pero presentó algunos problemas que se detallan más adelante. La productividad de CL1294 si bien no difirió con el testigo Gurí INTA CL. fue levemente inferior en Río Branco y Rocha y superior en Artigas y Treinta y Tres, logrando en promedio 5% más de rendimiento que el testigo comercial. CL1339, como tradicionalmente sucede en materiales de tipo japónica tropical, no tiene buena adaptación al norte, sin embargo, se destacó en las tres localidades de la zona este.

En el cuadro 3 se presentan algunas variables agronómicas y de calidad. La altura corresponde solamente a dos localidades y no se detectó interacción cultivar x localidad, por lo que se presenta la información por cultivar. Todos las cultivares tiene un porte intermedio, a excepción de CL1202,

Cuadro 2. Rendimiento de los cultivares en las cuatro regiones y rendimiento relativo a la variedad testigo Gurí INTA CL.

Material		Branco Gurí	Séptim kg/ha		Γ ⁄⁄6 Gurí	18 Julio kg/ha	,	ha ⁄⁄6 Gurí	Paso Fari	,	Art. ⁄⁄6 Gurí	Rend. rel. % Gurí
CL1202	а	113	11.871	bc	100	14.575	а	114	9.999	ab	110	109
Memby Porá	ab	104	13.153	а	111	11.341	d	89	10.556	а	116	105
CL1493	b	100	12.758	ab	108	12.962	bc	101	9.966	ab	110	105
CL1294	b	96	13.118	а	111	12.546	cd	98	10.195	ab	112	104
CL1339	ab	105	12.303	abc	104	14.273	ab	112	8.537	С	94	104
7009 FP	b	100	12.404	abc	105	12.137	cd	95	9.788	ab	108	102
Gurí	b	100	11.862	bc	100	12.796	cd	100	9.080	bc	100	100
CL1092			12.520	ab	106	12.482	cd	98	8.522	С	94	99
CL1119	С	81	12.457	abc	105	12.088	cd	94	9.722	abo	: 107	97
CL1289	b	98	11.243	С	95	11.597	cd	91	9.379	abo	: 103	97
CV (%)			5,8			6,75			7,52			
MDS(kg/ha)			1.233			1.512			1.234			

INIA ARROZ 2021

Cuadro 3. Características agronómicas, resistencia a enfermedades y calidad molinera.

Material	Altura (cm)	Scle (IS)	Rhiz (IS)	Pyri (*)	Entero (%)	Yeso (%)	
CL1092	92	4,0	4,0	R	71,3	2,7	П
CL1119	87	4,7	4,7	R	67,2	2,9	
CL1202	96	3,0	4,3	R	67,1	2,8	
CL1289	84	5,0	5,0	R	69,1	2,1	
CL1294	84	3,7	4,0	R	67,8	2,9	
CL1339	76	3,3	2,7	S	70,5	2,5	
CL1493	91	4,0	2,7	S	66,0	9,0	
Gurí INTA CL	88	3,7	3,7	S	68,3	2,8	
Memby Porá	85	4,0	4,0	S	68,6	3,2	
7009 FP	84	5,0	5,0	S	68,3	2,2	
CV (%)	5,3	33	41		2,4	48	
MDS(kg/ha)	5,4	ns	ns		1,6	1,7	

^(*) Pyri: Pyricularia, R. resistente, S. susceptible.

el cual es un cultivar de mayor porte, logrando 96 cm. A pesar de su porte, no se ha registrado vuelco en ningún año de evaluación. Dentro de las enfermedades más importantes no se encontraron diferencias significativas tanto para Rhizoctonia como para Sclerotium. Cabe resaltar que esta información se registró solamente en Rocha donde el productor aplicó dos fungicidas. La evaluación de Pyricularia en hoja se realizó en cama de infección, donde se discriminan los materiales en susceptibles o resistentes. Cinco líneas fueron resistentes, entre ellas, CL1294 y CL1202. Dichos materiales están en validación y han mostrado resistencia a Pyricularia en al menos 3 años. Los valores de entero son extremadamente altos y muy relacionado al uso de un pulidor Zaccarias el cual es diferente al que normalmente era usado en años anteriores (Satake). Sin embargo, se observa un gradiente y diferencias entre cultivares (Cuadro 3). Por otra parte, los análisis de calidad industrial fueron procesados de forma automática mediante el S21. En promedio de las localidades los valores fueron bajos, de todas formas, el cultivar CL1493 mostró valores muy altos (9%) por lo que se descartará para la próxima zafra.

Estabilidad

La performance de los materiales en diferentes ambientes se puede cuantificar de varias maneras, una de las formas más sencillas y prácticas es a través del coeficiente de variación (CV) y la variable en cuestión. Como se puede ver en la figura 1, el cultivar de mayor rendimiento (CL1202) no necesariamente es el más estable para estas 4 localidades, aunque su CV no fue de los más altos. Las dos líneas japónicas tienen una variabilidad más alta, probablemente explicada por su performance en Río Branco y Artigas, donde no tiene las mejores condiciones para expresar su potencial. La CL 1294 mostró equilibrio relativo al posicionarse en la media de rendimiento del gráfico y con un CV relativamente bajo.

CONCLUSIONES

La evaluación a escala pre comercial es un insumo importante para el programa de mejoramiento y permite detectar fortalezas y debilidades de los materiales antes de su validación a escala comercial. El rendimiento fue muy alto en las 4 localidades. El nuevo cultivar de ciclo largo y resistente a *Pyricularia*, CL1202,

⁽IS) Equivalencia con Sistema de Evaluación Estándar: 0 a 3 = Resistente, 4 = Moderadamente resistente, 5 = Moderadamente susceptible, 7 = Susceptible, 8 y 9 = Muy susceptible.

ARROZ 2021

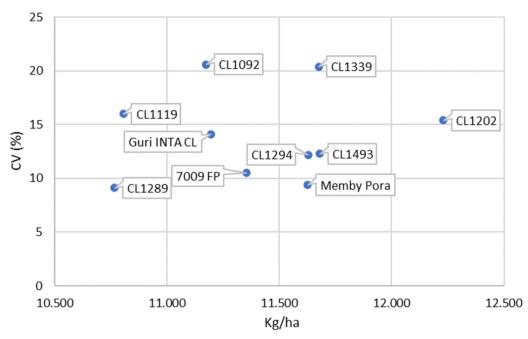


Figura 1. Estabilidad de los genotipos en función del rendimiento y coeficiente de variación.

mostró altísimo potencial, alcanzando 14,6 t/ ha en Rocha con condiciones climáticas excepcionales. Dicho cultivar también fue el de mayor rendimiento medio de las 4 localidades.

El CL1294, también resistente a *Pyricularia*, pero de ciclo intermedio-corto rindió 4% más que el testigo Guri INTA CL.